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ABSTRACT

An investigation into stable, robust control system

design with multiple input/multiple output (MIMO) plants was
U

conducted. Stability/robustness is identified as the first

and primary source of concern in MIMO control system design

and thus is the focus of research. Performance/robustness

requirements and the meeting of additional performance

specifications are largely left for future research. A

design example is presented, however, which incorporates the

meeting of certain performance criteria into the overall

framework of achieving MIMO stability/robustness.

Methods which can be utilized to assess the

stability/robustness properties of MIMO nominal plant models

without control are developed and identified as the first

step in the compensator (or controller) design process. The

previously developed Model Based Compensator/Linear

Quadratic Gaussian/Loop Transfer Recovery (MBC/LQG/LTR)

method is adopted as the general framework for MIMO

compensator design and numerous computer programs generated

to implement it. These programs are written for use with

the engineering software package PC-MATLAB. ,Original

methods are formulated, to be used in conjunction with the

MBC/LQG/LTR methodology, which provide the control engineer

with the mcans to aesign for ome measure of . . '- I- " '\

stability/robustness in the controlled system. Here, also,
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computer programs were written to implement theoretical

developments. Finally, a standard design process was

created using the above methodology for the design and

testing of a MIMO control system based upon

stability/robustness considerations.

i
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INTRODUCTION

Most systems require one form of control or another.

The system alone, which will be referred to here as the

plant, may be of almost any type. As one might expect,

anything from an airplane to a home heating unit to an

automobile constitutes a plant. Not so expectedly, one may

consider economies, large businesses, or even societies as

plants despite the fact that they are essentially non-

technical in nature.

Of importance to this investigation is the realization

that not only do plants differ widely in type but that they

also differ widely in complexity. The plants of the past

with a single input and single output (SISO) are more and

more giving way to plants with multiple inputs and multiple

outputs (MIMO) as technology races ahead. Extremely

advanced systems such as the Navy's Phalanx or Aegis Combat

System are possible only in the more advanced MIMO

framework. The result of this transformation is a dramatic

increase in complexity and therefore greater difficulty in

both analysis and design.

Regardless of composition, the control engineer

* recognizes the fact that, standing alone, plants will more

often than not exhibit operating characteristics that are
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undesirable for a specific application or a range of

applications. This necessitates the concept of control and

the field of control engineering. Essentially, a control

system in some way alters the basic plant operating

characteristics. This enables the designer to meet

stability and performance specifications in the controlled

system (control plus plant). Figure (1) illustrates the

standard control system configuration.

As described above the plant Gp may be either

relatively rimple or quite complex. Figure (2)

demonstrates this disparity. Note that in the SISO example

only one transfer function G relates the plant input to the

plant output. In the MIMO example, however, numerous

transfer functions relate the two inputs to the two outputs

and all transfer functions are inter-connected and

simultaneously affect one another. Some simplification of

this MIMO diagram may be possible but not to the level of

simplicity seen in the SISO diagram.

Before further examining the difficulties the MIMO case

presents, it is first necessary to introduce the concept of

stability/robustness. Simply having the plant of interest

and being able to observe its operation under certain

conditions is by no means sufficient information for the

process of analysis and design which will yield a

controller that, when used in conjunction with the plant,



0
8

~

0
~sm4

0

*
o

.
*

0

*
'a"

*
I-.'

S

0



SISO PLANT EXAMPLE

__Q U HC

MIMO PLANT EXAMPLE

Em m " - .0 o w

1y

FIUR (2



q 10

will produce whatever operating specifications are desired.

Rather it is necessary to possess or formulate some nominal

plant model which, to some degree of accuracy, reproduces

plant operation. Using that nominal plant model expressed

in whatever format is relevant for the methods employed, the

control engineer will then proceed to design the control

system. The particular model format needed for the methods

*developed and used within this investigation will be

presented in later sections.

What is of paramount importance here is the

understanding that the nominal plant model will never be a

true depiction of actual plant operation. For a variety of

reasons and to varying degrees, an error between the actual

and nominal model plants will always exist. The reasons for

this disparity are three-fold:

(1) Values of the parameters within the nominal plant
model will exhibit variations due to changes in
environmental conditions, maintenance-induced and
calibration errors, and aging and wear.

(2) Nonlinearities which cannot be expressed in the linear
nominal plant models generally used by control
engineers are present in real plants.

(3) Certain dynamics which will not be present in the often
* rather crude, low order time invariant model

approximations used in control system design are
present in real plants.

* This recognition of an inherent error between the

nominal plant model and the actual plant raises a



fundamental question. If a control system is designed using

the nominal plant model, how will the controlled system

behave when operating with an actual plant? Because this

paper is primarily concerned with stability, this question

may be rephrased: If a controller is designed using the

nominal plant model to preserve the stability of the

system, will the system still be stable when it is an actual

plant that is being controlled?

The concept of stability/robustness is the direct

result of this question and is formally defined by:

Robustness [stability/robustness] refers to the
delineation of finite regions of allowable
variations in system parameters that preserve
stability.[6, p.81]

Simply stated, stability/robustness is a measure of how much

the parameters that make up our nominal plant model can vary

before the controlled system becomes unstable. The task

before the control engineer is to design a control system in

which the critical property of stability holds in actual

operation despite the presence of the errors described

above.

Not surprisingly, considerable attention has been given

to the issue of stability/robustness. For SISO systems, a

significant body of theory exists that adequately addresses

the problem by providing the designer with the means to

I l i i i i i
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place built in guarantees or tolerances in the controller.

Such effective SISO methodology includes Nyquist

diagrams[4], Nichols charts, and Evans root-locus

techniques(9]. For the MIMO case, it is quite another

matter. Clearly, classical SISO methods cannot be applied

to the MIMO stability/robustness problem:

* ...because these approaches [SISO methods] are
incompatible with MIMO systems or with systems
having nonlinear or time-varying plant ignorance,
there is a need for alternative approaches...[9]

The reason is straightforward. In the SISO case the number

of varying parameters is generally low and, if more than

one, their relation usually is not complex. Using the

methods identified above, the effects of variations can be

analyzed and the controller designed to handle certain

ranges of errors. In the MIMO case, many parameters will

often vary and the relationships between them are of a

highly complex nature beyond any hope of precise and useful

mathematical expression. Primarily for these reasons, the

above SISO stability/robustness methodology simply does not

work with MIMO systems.

Having realized the ineffectual nature of SISO methods

for the MIMO (or often referred to as multivariable) case,

those in the control engineering field have firmly concluded

that new methodology is needed. One approach which has been

made is to look at each of the individual loops in the

0:. . . i l| alldm a Dl l l p a
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multivariable system one at a time and then apply SISO

methods while all other loops are held constant. The

obvious deficiency in this approach lies in the complete

failure to take into account simultaneous changes in these

loops[6, p.76]. Also, an attempt has been made by

MacFarlane, Rosenbrock, et al, to extend SISO Nyquist design

methodology to handle multivariable systems. These methods

too have run into the difficulty of failing to take into

account possibilities inherent in the complex MIMO

system[4]. Finally, singular values (denoted by a) have

been introduced which, roughly stated, are used to represent

all the possibilities in the multivariable case. Using

singular values, stability/robustness inequality tests have

been developed which depend on both knowledge of the

nominal plant model and knowledge of the error between that

model and the actual plant[3].

It is at this point that this Trident Scholar Project

enters the picture. The singular value inequality test

method for stability/robustness presents the greatest

opportunity for resolving the MIMO dilemma, but it too has a

dramatic flaw. The error it employs in the inequality tests

is based on the difference between the Gp of the nominal

plant and the G of the actual plant. As will be shown

later, this type of error is quite difficult to define.

This project, however, has developed alternative
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singular value inequality tests based on error information

which is much more readily determined by the engineer and

therefore of greater practical value. The limitation of the

project methodology lies in the fact that it applies mainly

to systems operating at low to mid frequencies, although

even for higher frequency systems, this is often the chief

area of concern due to performance considerations.

An additional and quite different method of assessing

the stability/robustness of a MIMO system was also developed

in the project. Essentially, it involves the identification

of the parameters which are most important to the stability

of the system followed by the determination of regions of

stability for these identified parameters. The method

side-steps the problem of finding and using mathematical

relationships governing the parameters of the system. Its

effectiveness wanes as the number of parameters with

significant effects on stability increases but is still

shown to be a valuable design tool for many applications.

The remainder of the project is devoted to the design

of a controller (or compensator) based upon

* stability/robustness considerations. The Model Based

Compensator/Linear Quadratic Gaussian/Loop Transfer Method

(MBC/LQG/LTR)[I],[3],[10] serves as the foundation for

* compensator design but only when augmented by the project

findings described above does it become a useful tool which
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the engineer can use to design for good

stability/robustness in the controlled system. The latter

portion of the paper, including a description of a standard

design process and an example, encompasses all earlier

portions of the paper and serves both as a summary and as a

valuable tool which the practical control engineer can

utilize when confronted with the MIMO control system design

problem from start to finish.
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OBJECTIVES

The objectives to be met in this Trident Scholar Research

Project were:

(1) Develop the means to assess the

stability/robustness of a nominal multiple

input/multiple output (MIMO) plant.

(2) Complete an analysis of the MBC/LQG/LTR MIMO

compensator design methodology and write the

necessary computer programs to implement it on the

engineering software package PC-MATLAB.

(3) Develop guidelines, to be used within the

framework of the MBC/LQG/LTR methodology, for the

design of a compensator that will provide good

stability/robustness for the controlled MIMO

* system and write the necessary PC-MATLAB programs

to realize the theoretical findings.

* (4) Formulate a standard design process which enables

the practical control engineer to use the results

from objectives (1-3) and meet requirements for a

• stable, robust system.
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PART I

Methods to Assess Stability/Robustness of

a MIMO Nominal Plant Model

Description

Any nominal plant model will always differ by some

error from the actual plant it represents.

Stability/robustness is a measure of how sensitive a nominal

6 model of a system is in terms of stability to this error.

If a plant is nominally stable, but will remain stable only

when faced with a slight error, it can be said to possess

poor stability/robustness. Conversely, if a plant is

nominally stable, and will remain stable even when subjected

to a significant error, it can be said to possess good

stability/robustness. Obviously, it is the latter and not

the former condition that the control engineer desires.

The first step in any control system design process

must be to assess the operating characteristics of the plant

alone. This includes an analysis of both its open loop and

closed loop properties. Figure (3) illustrates the standard

open loop configuration and Figure (4) illustrates the

standard closed loop configuration for the plant alone (no

controller). The closed loop properties are of primary

concern as it is the closed configuration which generally
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PLANT Gp(s)
FIGURE (3)

PLANT Gp(s;)

FIGURE (4)
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affords the more desirable operating characteristics

including, but not limited to, steady state error, command

following, and disturbance rejection. Therefore, unless a

statement is made to the contrary, it is the closed loop

properties and more specifically closed loop stability that

is discussed.

Reasons for assessing the stability/robustness of the

plant alone (no controller) include (1) if the plant alone

already meets design requirements, then the design of a

*@ controller (referred to later as a compensator) is not

necessary and (2) this assessment will provide the designer

with some feel as to what degree the plant operating

characteristics must be modified by the control system.

This portion of the paper describes ways in which the

stability/robustness of a nominal MIMO plant model can be

determined. Two methods unique to this project, one in

terms of format and the other in terms of the concept, are

* presented:

(1) Use of singular value inequality tests method
(2) Use of deviation of parameters method0

It is important to note that while this methodology is

being developed in terms of the plant alone in this portion

of the paper, the findings, particularly the singular value

inequality tests, will be equally applicable later when the

0m m m i~~mm m i m
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development of methodology for the design of a compensator

for good stability/robustness is discussed.

Development and Discussion

A. Theoretical Background

1. Figures (3) and (4) show the format which will be used

to describe the MIMO nominal plant model in this project.

The complete open loop mathematical formulation is given by:

x = Ax + Bu (1.1)
y = Cx (1.2)

Gp(S) = C (SI - A)-IB (1.3)

.While the complete closed loop formulation is given by:

x = (A - BC)x + Br (1.4)
y = Cx (1.5)

Gcl(s) = GP(S) (1.6)

and I + Gp(s)

Gcl(s) = C (sI - A + BC)-IB (1.7)
Acl = A - BC (1.8)

Of importance for closed loop stability is the Ac, matrix.

By evaluating the characteristic equation:

JsI - Acli = 0 (1.9)

one is able to solve for the values of s that satisfy it and

thus obtain the eigenvalues of the closed loop nominal

e i l l l l i l i I | l l . .
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plant. Figure (5) demonstratz some of the possible

solutions in the s-plane. The key is that if any of these

solutions, or eigenvalues, lie in the right half plane of

this diagram then the plant will be unstable. In Figure

(5), the system would be unstable because an eigenvalue is

in the right half plane.

-Computer-Aided Design (CAD) software such as PC-MATLAB

have built-in functions which can calculate the eigenvalues

of any matrix, and thus of Acl, with ease. If the A,B, and

C matrices are known at any time, then the eigenvalues of

Acl can be calculated and the stability of the system

determined. This will be of use latar in this part of the

paper.

2. It is essential to gain an understanding of what is

meant by singular values (denoted by a) before utilizing

them in the assessment of MIMO stability/robustness.

Singular values are used to overcome a fundamental

* difficulty in multivariable analysis; namely, because of the

complexity inherent in these systems there are often

numerous possibilities ar to how the system will operate for

* any given condition. For example, in the SISO case it can

be determined what the gain will be between the plant input

and output at a certain frequency. In the MIMO case,

* however, there may be an entire range of possible gains that

could exist at that frequency.
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Singular values are used to describe this range. Most

importantly, the maximum and minimum singular values (amax

and amin) can be thought of as the upper and lower bounds,

respectively, on this range. Figure (6) is a singular value

plot of an open loop nominal plant. The y axis value is the

gain in db between the plant input u and output y, which

corresponds to the magnitude of Gp(s). The upper line

represents amax and the lower line amin, and the gap

between them shows the range of possible operating

conditions. These maximum and minimum singular values will

be heavily exploited in the singular value inequality tests

that are developed. See Appendix A.1 for the definition of

and fundamental relations governing singular values.

3. Mention will be made in the portions of the paper to

follow of a theoretical worst error for stability.

Solution of equation (1.9) gives the eigenvalues of the Acl

matrix which were shown to be direct indicators of stability

* according to which half plane of Figure (5) in which they

lie. If the real part of any eigenvalue (x axis value) is

positive, then the system is unstable. If the real part of

* one eigenvalue is zero and all the rest have negative real

parts, then the system is on the very border of stability.

In addition, it is stated in Appendix A.1 that the closest

* eigenvalue to zero is related to amin in the sense that if

one goes to zero, the other must as well.



25

NOMINAL PLANT: OPEN LOOP SINGULAR VALUES
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This theoretical worst error for stability (notated as

Ew) is defined as the minimum error in the least likely

direction added to Acl(nom) which will just make amin go to

zero (and the closest eigenvalue as well) and place

Acl(act) on the very border of stability. Note that worst

does not imply largest.

Acl(act) = Acl(nom) + Eacl (1.10)
Ew = Eacl in worst case for stability (1.11)

See Appendix A.2 for the explicit calculation of Ew.

A couple of additional notes on Ew are in order.

First, the Ew described here exists only at low frequency (w

-> 0). As frequency increases, this Ew will no longer

accurately describe the difference between Acl(act) and

Acl(nom) for worst case error. Second, the true value of

Ew lies in its application to the methodology to follow. In

the deviation of parameters method, it is used as a basis

for choosing which parameters have the greatest impact on

the stability of the nominal plant model. In the singular

value inequality method, it can be used as a check on the

tests established. At low frequency, a( Ew ) should

exactly coincide with amin( sI - Acl(nom) ).

B. Singular Value Inequality Test Method
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1. The concept of using singular value inequality tests to

gauge stability/robustness for MIMO systems is not a new

one. Michael Athens, Gunter Stein, John Doyle, et al, have

established such tests already that are entirely valid[3].

However, these tests include a large obstacle that even the

developers have been unable to overcome. Essentially, these

tests are based on both singular value plots of the nominal

plant model and on an error between the nominal and actual

Gp(s), with Gp(s) as defined in equation (1.3). The crux of

the problem lies in the fact that it is very difficult, if

not impossible, to physically define this error. Gp(s) has

little physical meaning.

The result is that however valid the tests may be, they

remain generally ineffective for solving the MIMO

stability/robustness problem. The answer given when

confronted with this situation is basically that only

extensive experience with the MIMO plant in question will

yield any idea as to what this error might be.

2. Project methodology adopts the concept of the singular

value inequality test but differs in the composition of the

inequalities and definition of the error between actual and

nominal systems. Instead of focusing on Gp(s), Acl as

defined in equation (1.8) was adopted as the focus of

interest. The necessary error for the inequalities used
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here becomes Eacl as defined in equation (1.10).

Because Eacl is entirely dependent on differences

between the nominal and actual A,B, and C matrices which are

mathematical descriptions representing physical entities, it

becomes a much more physically meaningful error than one

involving Gp(s). For instance, the nominal values of A,B,

and C are always known at any time, and the control engineer

has some hope of assessing what they are in actuality. Such

is not the case when using an error based on Gp(s).

S

The singular value inequality tests established were:

(1) IF amin( sI - Acl(nom) ) > amax( Eacl ) (1.12)
THEN: The actual system is guaranteed stable at low w

(2) IF : amax( sI - Acl(nom) ) < amin( Eacl ) (1.13)
THEN: The actual system is guaranteed unstable at low w

(3) IF : Neither condition holds (1.14)
THEN: The actual system may be either stable or unstable

at low w

See Appendix A.3 for a proof of singular value inequality

test (1), the most important and most used of the three,

particularly for control system design. Although

substantiated by considerable experimentation, a

mathematical proof for test (2) has yet to be found. Test

(3) follows from the first two.

Figure (7) illustrates graphically the possibilities

0-- a i l llI O m i
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inherent in these three tests. "Errorl" represents amin(

Eacll ), "Error2" represents amax( Eacl2 ), and "Error3"

represents amax( Eacl3 ). The first parallel and then

joining lines represent a( sI - Acl(nom) ) with the top

being the maximum and the bottom the minimum. Applying the

inequalities, one discovers that Eacll will guarantee

instability, Eacl2 may result in stability or instability,

and Eacl3 will guarantee stability in the actual system.

3. Here then is a means which can be used to assess the

stability/robustness of the MIMO nominal plant model. First

a( sI - Acl ) is plotted. This plot was chosen for use in

the test because (1) Acl is the plant term of direct

interest for closed loop stability and (2) a( sI - Acl ) is

an expression of system behavior that does not demonstrate

significant frequency effects until the mid frequencies as

evidenced by Figure (7). The engineer then uses information

he obtains concerning the difference between the nominal and

actual plants at low frequency to calculate Eacl. Finally,

a( Eacl ) is plotted and the conclusion regarding

stability/robustness made using the three singular value

inequality tests.

Obviously a limitation of this methodology lies in the

imposition of a frequency range on the validity of the

tests. Yet, while a constant Eacl might be calculated at

low frequencies (w -> 0), its relevance extends at least to
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mid-range frequencies. The reason is that, as was

mentioned above, frequency effects on a(sI - Acl) do not

really come into play until the mid-range frequencies (the

flat portions of the plots) and thus the relevance of the

tests is maintained until that point.

It will also be shown in Part III of the paper that

extra measures of stability/robustness are provided in the

test's weakest region of applicability, the high

frequencies, in the compensator design process. The end

result is that the engineer can evaluate Eacl directly from

Acl(nom) and Acl(act) at low frequency and yet have valid

stability/robustness results through higher frequencies,

thereby encompassing the chief area in which the designer

will desire the system to operate anyway for performance

considerations. While the project method is not the

overall, general solution to the problem, it does present

the engineer with somewhat limited but usable techniques

instead of the unlimited but unusable techniques previously

in existence.

C. Deviation of Parameters Method

1. The deviation of a plant parameter refers to a

change in value for one of the plant parameters between the

nominal plant model and the actual plant. Reasons for such
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parameter variations are offered in the Introduction and the

fact that deviations will always be present is without

question. Within a stability/robustness framework, however,

the crucial issue centers not on the existence of deviations

but on their effect on the stability of the plant.

Intuitively, one may suppose that certain deviations would

have little effect on stability while others could have

*I dramatic impacts.

The problems the MIMO case presents for analyzing the

* Oeffects of parameter deviations on stability include (1)

the fact that a MIMO plant is quite simply likely to be

* composed of many more parameters than in the SISO case and

(2) as the numbers of parameters increase, the likelihood of

any mathematical representation of the effects the

deviations have on one another becomes extremely remote, if

not quite hopeless. In fact, this project did not uncover

any attempts to address the MIMO stability/robustness

problem from this direction.

2. Project methodology requires, first, that a worst case

error for stability be calculated. See Appendix A.2 for the

* calculation of this error Ew and section A.3 above for a

description, which includes equations (1.10) and (1.11) as

mathematical definitions. Ew reflects the change Acl(nom)

* is most sensitive to with regard to stability, and will be

used as the basis for determining the significance of

0 - rm - , s nnm m llIm m m a ...
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individual parameters on the stability/robustness of the

plant. The only change in Ew here is that it is created to

be physically meaningful in relation to Acl(nom) for

whatever parameters, including all, that are of interest

initially. For example, if a certain element of the

Acl(nom) matrix does not change at all when all of the

parameters of interest are deviated, then the corresponding

element in the Ew matrix will be zero. Computer routines

then search for a constant with which to modify the Ew

matrix, which is now missing elements, so that it remains a

worst case error.U

The next step is to test each element of the matrix Ew

for effects on the stability of the plant. This is

accomplished by use of computer routines which deviate each

element of Ew and see if the resulting change in the

eigenvalue closest to zero falls within a specified

tolerance or not. If the change does fall within the

tolerance, that element is set to zero. All elements are

tested in this manner and a reduced Ew is the result.

Following this the effect of each parameter on

stability is evaluated by computer routines which (1)

deviate the parameter, (2) calculate a new worst Ew using

that deviation, (3) check the effect of the parameter on Ew

by comparing the new to old Ew and (4) check the effect of

the parameter on stability by seeing if the change in the
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eigenvalues of the new and old Ew fall within a specified

tolerance. The result is the elimination of parameters for

stability/robustness concern which demonstrates negligible

effects in (3) and (4), as well as a prioritization of those

that remain in terms of their stability significance. The

prioritization of the parameters is accomplished by

gradually making the eigenvalue comparison tolerance in (4)

more coarse until, one by one, the parameters drop out.

The parameter remaining at the end is most important to

stability, the last to be removed is the second most

important and so on.

The final step is to construct region of stability

plots for the parameters that are found by the above

techniques to have significant effects on stability. These

plots graphically show allowable percent deviations in each

of the parameters plotted. The plot is constructed in the

appropriate number of dimensions for the number of these

parameters of concern for stability. Figure (8) is a region

* of stability plot for a MIMO plant that began with 11

nominal parameters and was reduced to the three parameters

shown. The allowable percent deviations in each parameter

* are clearly delineated.

3. The methods developed here present a reliable,

* effective means of analyzing the stability/robustness of

many MIMO plants. Obvious problems result when the number

0J
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of significant parameters cannot be reduced sufficiently for

a single region of stability plot (more than three

parameters to plot) and the reduction process itself becomes

more course as the total number of parameters is increased.

Nonetheless, considering the lack of any other progress in

this approach to MIMO stability/robustness, the benefits of

the method developed are very apparent.

0

0'
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0
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PART II

A Review of the MBC/LQG/LTR MIMO

Design Methodology

Description

The design of a control system will be necessary if the

control engineer determines that the operating

characteristics of the nominal MIMO plant model are not

satisfactory. Usually the engineer will be presented with

certain specifications that are to be met. A conclusion

that the plant must be modified is reached when the plant

operating characteristics fail to meet these

specifications. The nature of such specifications vary

widely from any number of performance requirements,

including but not limited to good command following and zero

steady state error, to stability requirements. The

specification that the system must remain stable under most

conditions is almost always present and certainly the most

important. If the system is not stable, performance is a

moot point.

Having made the determination that the plant must be

modified, attention then turns to the means with which to

accomplish it. The control system may take many forms but

the standard configuration, and the one used here, was seen
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in figure (1). Essentially, it involves the addition of a

compensator K(s) in the feedforward path which includes the

plant Gp(s) and the use of a feedback path from the plant

output to a reference input. The design of K(s) then

emerges as the basic problem confronting the control

engineer.

.6 Just as was the case with the assessment of MIMO

stability/robustness, the design of a MIMO compensator

presents significant problems in the context of conventional

* SISO methodology. The inherent complexity and possibilities

of operation in the MIMO case once again render such

methods virtually useless. It is only the recent emergence

of new MIMO compensator design theory that has made the

problem tractable. The Model Based Compensator/Linear

Quadratic Regulator/Loop Transfer Recovery

(MBC/LQG/LTR)[1],[3],(10] method developed by Athens,

Stein, et al, provides the means to obtain a compensator

K(s) to meet stipulated specifications in the MIMO case.

* All material methodology presented in this part of the paper

is attributed solely to them.

* The purpose here is to present a brief outline of this

method and its use. The intent is not to offer a complete

explanation or justification, but rather to provide an

* understanding of its implementation for later portions of

this paper which will utilize the method. Basically, this
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methodology will serve as the framework upon which the tests

developed in Part I will be used to design a compensator

that will guarantee stability/robustness for the control

system (compensator + plant). For those desiring a more

complete understanding of the MBC/LQG/LTR method, attention

should be directed to the References where some excellent

sources are listed.

Finally, while a theory has been developed and is

accessible, a significant obstacle remains for anyone

desiring to implement it. The great majority of the theory

depends entirely on the availability and use of Computer-

Aided Design (CAD) software. The package PC-MATLAB was

chosen and used for this project. Such CAD software might

be thought of as the algebra, however, while the equations

remain to be written. A significant portion of this Trident

Project was spent developing the computer programs which

would use the mathematical capabilities of the software to

implement the MBC/LQG/LTR methodology. Descriptions and

instructions for these programs are listed in Appendix B.

The programs themselves will be kept in the U.S. Naval

Academy Weapons and Systems Engineering Department where

they are available for general use.

6t

'6
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Development and Discussion

A. The Design Plant Model (DPM)

The first step in the MBC/LQG/'LTR methodology is to

specify a DPM. The DPM is similar to the nominal MIMO plant

model but differs in two important aspects:

(1) All variables used in the nominal plant model may not

be of the same type, meaning that the units used to

*. describe them may not be compatible. For example, an

output in volts cannot be directly compared to an input

in degrees. The units are different. Therefore, a

scaling of the variables is reflected in the DPM.

(2) The designer may want to include certain augmentation

dynamics (such as integrators) to meet performance

requirements (such as zero steady state error). These

dynamics are included in the DPM.

The mathematical formulation of the DPM is identical to that

seen earlier in equations (1.1) to (1.8) for the nominal

* plant model. The only difference is that the matrices A,B,

and C will include those changes made for reasons (1) and

(2) above. If no such changes are made, the DPM will be

• identical to the nominal plant model. Therefore, if a

subsequent reference is made to the nominal plant model and
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not the DPM, it means that neither scaling nor augmentation

dynamics changes were made.

B. The Target Feedback Loop (TFL)

The TFL represents the feedback loop the designer

desires when his compensator (described later as the MBC) is

added to the plant, thus the name "Target". To some degree

of accuracy, the way this loop performs will be the way the

entire control system will perform. The meeting of all

performance, and most importantly for this paper, stability

requirements is done in this stage of the compensator design

process.

Figure (9) is a diagram of the TFL. It is identical in

structure and similar in content to that seen for the DPM.

The open loop mathematical formulation is given by:

x = Ax + Hu (2.1)
y = Cx (2.2)

Gh(s) = C (sI - A)-IH (2.3)

While the closed loop formulation is given by:

x = (A - HC)x + Hr (2.4)
y = Cx (2.5)

Gclh(S) = Gh(S) (2.6)

and I + Gh(s)

Gclh(S) = C (sI - A + HC)-1 H (2.7)
Aclh = A - HC (2.8)
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Note that the only difference between this set of equations

and those used for the nominal plant model (and the DPM) is

the matrix H in place of the matrix B. This matrix H is the

design parameter available to the engineer with which he can

shape the TFL operating characteristics to meet

specifications for the controlled system.

Figure (10) is a singular value closed loop plot of

Gcl, the nominal plant. By a judicious selection of the

matrix H, the designer wishes to match all singular values

(essentially reduce to one line) and achieve a value of 0 db

at low frequencies for good command following. Figure (11)

is a singular value closed loop plot Gclh of a TFL that

achieves these objectives. Methods currently exist, for

both Gh(s) and Gclh(S), to match TFL singular values at low

frequencies, high frequencies, or both, and to move the

entire plot up or down in value.

For an explanation of how this is accomplished see the

literature in the References. It essentially involves the

use of a fictitious continuous time Kalman Filter to find H.

The literature should also be consulted concerning the

inherent, built in properties of the TFL. The computer

programs in Appendix B provide the designer with a choice of

where to match the singular values and also with a choice

for the value of the scalar that will move the plot up or

down in value. Based on these choices, the design parameter
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matrix H is calculated and a TFL realized. The range of

possible values of this scalar will be discussed in Part

III with regards to stability/robustness.

C. The Model Based Compensator (MBC) and TFL Recovery

Now that the TFL has been designed to perform like the

controlled system should perform, it is necessary to produce

the compensator (referred to in this method as a MBC) that

when added to the plant will recover this TFL. In other

words, by adding a MBC to the plant, the system should now

behave just as the TFL does, to some degree of accuracy.

Figure (12) is a diagram of the MBC itself and Figure (13)

is a diagram of the entire control system with a

compensator.

N

While the structure of the MBC as seen in Figure (12)

is new, all the terms in it are not save one. The matrices

A,B, and C all come from the nominal plant model (or DPM)

and the matrix H from the TFL. What is new is the matrix G.

This is the design parameter that enables the MBC to

essentially cancel the plant and insert in place of it the

TFL operating characteristics. Figure (14) includes plots

of the TFL closed loop singular values and the control

system with the MBC added closed loop singular values.

Ideally, they should be the same, but one can immediately
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see that at high frequencies they begin to differ.

U
Again, for those interested in exploring how the TFL is

recovered by the MBC, attention is directed to the

literature in the References where complete explanations are
Fj

provided. Basically, G is calculated via a solution to the

cheap-control Linear Quadratic Regulator (LQR) problem. The

computer programs in Appendix B provide the designer with a

choice for a scalar to be used in calculating G. This

scalar determines the accuracy with which the control

system with the MBC will recover the TFL operating

characteristics and also what magnitudes of controls will be

used. Not surprisingly, the better the recovery, the

larger the control magnitudes.

D. Summary of MBC/LQG/LTR Method

(1) Define the DPM. If neither scaling or augmentation

dynamics changes are desired, then the DPM will be

identical to the MIMO nominal plant model.

(2) Calculate the TFL design parameter matrix H to make the

TFL operating characteristics meet all required

specifications. This is, ideally, what the plant

augmented by the MBC will look like.
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(3) Calculate the MBC design parameter matrix G to recover

the TFL operating characteristics. Compare MBC plus

plant loop behavior to that designed in the TFL. If

agreement is close, and therefore specifications are

met, then the MBC design process is complete.

j

0

0

0
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*PART III

Compensator Design Based on Stability/Robustness

Considerations

Description

Part I provided the means with which to assess the

stability/robustness of a MIMO nominal plant model. Quite

often the control engineer will not find the results

L acceptable. The plant operating characteristics must then

be modified by the addition of control to the plant to

correct whatever deficiencies are found.

1
Control will be added to a plant not only to overcome

poor stability/robustness but also to meet performance

requirements that the plant alone does not attain. Even if

the engineer is adding a compensator only to improve

performance, however, he still must be concerned about

stability/robustness. The reason is that when changing the

plant to improve performance, the stability/robustness

properties could deteriorate. Therefore, whenever a

compensator is added to the plant, the designer must

possess some allowable bounds on his compensator design

parameters that will insure good stability/robustness.

b
Part II summarized the MBC/LQG/LTR design methodology.
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A designer utilizing this methodology is able to modify the

plant by use of the MBC to achieve whatever operating

characteristics were defined in the TFL. In terms of

stability/robustness, the problem then becomes how to shape

the TFL so that an actual stable system is insured upon

recovery of the TFL. The answer is to apply a

stability/robustness singular value inequality test defined

in Part I and then find which shapes of the TFL indicate

that the actual system will remain stable. The result will

bound some design parameter. These bounds ;--e shown below

to be on a scalar used in calculating the H matrix of the

TFL, within which the designer can then seek to meet other

requirements for system operation such as performance

specifications.

Here too, computer programs were written for the

software package PC-MATLAB. These programs are described in

Appendix B. The specific uses for those most important to

this part of the paper will be given below but Appendix B

* should be consulted to identify the applicable programs and

to receive instructions on their use.

0
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Development and Discussion

A. The MBC and TFL Shaping Using Singular Value

Inequalities

1. The singular value tests given in equations (1.12) to

(1.14) that were used to evaluate the stability/robustness

of a MIMO nominal plant model have direct applicability in

the TFL. As described above, the goal is to find the shapes

of the TFL that will insure good stability/robustness.

Equation (1.12) provided the test for guaranteed stability

and therefore it is the test that will be used. However,

because it is based on the nominal plant model and not the

TFL, it must be modified slightly. The difference is in the

definition of the closed loop A matrix Acl. In the TFL

interest is in Aclh from equation (2.8) and not Acl, so the

test equation becomes:

IF : amin( sI - Aclh ) > amax( Eacl ) (3.1)
THEN : The actual system is guaranteed stable at low w

Recall that Eacl is the difference between the actual and

nominal closed loop A matrices that will occur as defined in

equation (1.10). Pounds on the design parameter of the TFL

can then be found such that the plots of Omin( sI - Aclh )

and amax( Eacl ) never cross, thereby insuring a system

which can never go unstable (given that the value of Eacl is
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correct).

2. It was shown in Part II that the design parameter in

the TFL is the matrix H and that computer programs have been

developed in this project which facilitate the calculation

of H to shape the TFL in certain ways. Specifically, the

programs allow the choice of matching the singular values of

the TFL closed and open loop transfer functions Gh(s) and

Gclh(S), defined in equations (2.3)(2.6) and (2.7), at low,

high, or both low and high frequencies. Unfortunately, this

* shaping does not directly influence the appearance of a( sI

- Aclh ) which is the expression of interest here. Figures

(15) and (16) illustrate this fact. The same H used to

generate Figure (15) was used for Figure (16).

Therefore, all that is left to the designer is the

scalar used in the calculation of H which moves the singular

plots up and down in value. The allowable bounds on the

value of this scalar thus become the allowable bounds on the

* TFL design parameter, given whatever type of shaping is

chosen. A computer program was developed which, over any

specified range in this scalar, would indicate for what

* scalar values the above plots crossed (the inequality test

failed) and for what values they did not cross (the

inequality test held). The result is that the designer has

• a range of scalar values (and thus a range of H matrixes)

for which he knows a system with good stability/robustness

0
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will result. Figure (17) demonstrates a choice of a scalar

that guaranteed a stable system while Figure (18)

illustrates one that did not guarantee a stable system.

3. When actually implementing this method, the correct
a

identification of Eacl is of obvious importance. As was

discussed in Part I section B.3, the singular values of Eacl

may vary with frequency due to the fact that the difference

between the nominal and actual closed loop A matrices,

Acl(nom) and Acl(act), varies with frequency. The singular

value inequality test, which uses a constant Eacl calculated

at low frequency only, is therefore not using the true error

between the actual and nominal plants.

U
However, it was shown that one of the advantages of

using the singular value inequality test method of this

project versus other methods was that frequency effects on

(sI - Acl) can be seen graphically as in Figures (17) and

(18) to be minimal (hence the flat plots) up to the mid-

range frequencies. The point is that the designer would be

able to directly calculate Eacl at low frequency according

to equation (1.10) and yet have the stability/robustness

properties given by the test remain relevant up through the

mid-range frequencies. It is this low to mid-range

frequency band that is usually where the system will operate

due tc performance considerations anyway (at high frequency

performance such as command following rapidly deteriorates).
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There is another justification for employing the Part I

test inequality (as modified in equation (3.1)) which uses

an error Eacl calculated at low frequency. When the TFL is

recovered by the MBC, the closed loop singular values of

the controlled system (MBC plus Plant) fall off at -40

db/decade instead of the -20 db/decade seen in the desired

g TFL. This is clearly evident in Figure (14). The result is

that the recovery process inherently adds an extra margin of

insulation against high frequency errors such as sensor

noise. This high frequency region is the same range of

frequencies over which the inequality test equation

theoretically is no longer valid.

The ultimate solution is the formulation of a

methodology which is applicable at all frequencies and which

utilizes practical error information that the engineer can

provide. However, it has been seen that for many

applications the use of inequality (3.1) will provide

* meaningful if not absolutely guaranteed measures of

stability/robustness through compensator design.

B. The MBC and TFL Shaping Using Eigenvalues

* 1. In Part I section A.1, it was shown that if the closed

loop A matrix Acl is known at any time, its eigenvalues can
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be calculated and a direct stability determination made

based on the presence of any eigenvalues with positive real

parts. This serves as a foundation for another method that

finds bounds on a design parameter in the TFL such that,

when the MBC is recovered and added to the plant, a stable
U

controlled system will be insured.

As was the case above, since design for the MBC is

taking place in the TFL the closed loop A matrix Aclh from

equation (2.8) becomes the term of interest. One of the

guarantees inherent in the TFL is that closed loop stability

which can be read directly from Aclh by means of its

eigenvalues will always be present. This matrix, however,

represents a nominal value in the sense that when the TFL

operating characteristics are recovered by use of the MBC

the resulting closed loop A matrix of the combined MBC plus

nominal plant will approximate those of Aclh. Because

stability/robustness hinges on how the controlled system

will behave in actual operation (MBC plus actual plant) with

errors present, it is the Aclh matrix subjected to the error

between actual and nominal closed loop A matrices, or Eacl,

that must be evaluated for stability.

2. Equation (1.10) provides the relationship between the

closed loop actual and nominal A matrices and is also a

definition of Eacl for the MIMO nominal plant model case.

For design in the TFL using this method, the equation
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becomes:

Aclh(act) = Aclh(nom) + Eacl (3.2)

where Aclh(nom) is identical to the Aclh described above and

in Part II, and is equal to A - HC, with H being the design

parameter of the TFL obtained from computer programs in

Appendix B. As described in section 1 above, a scalar

emerges as the design parameter available to the designer

for the calculation of H.

The procedure for determining bounds on this scalar to

insure stability of the actual system when the TFL is

recovered by the MBC follows directly. If Aclh(act)

represents what the actual system (MBC plus actual plant)

will behave like, Aclh(act) can be calculated at any scalar

value by first generating H from that scalar, calculating

Aclh(nom) directly from equation (2.8), and then applying

equation (3.2). Once Aclh(act) is obtained, its

* eigenvalues are found and a stability determination is made.

A computer program was developed which would implement this

procedure over a specified range of scalar values, thereby

0 indicating which values of the scalar would insure a stable,

actual controlled system.

* 3. The limitations of this method are much greater than

those in the above method. First, while both methods allow

.J
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for only a constant Eacl determined at low frequency, it was

shown both above and in Part I that the project singular

value inequality technique has applicability at other

frequencies. Without any factors to indicate that there

might be applicability at higher frequencies in the

eigenvalue method, however, it must be considered strictly

limited to low frequency.

Second, the singular value test method insures

stability by using amax( Eacl), which by definition serves

as a maximum upper boundary on the different errors that the

plant may be subjected to. The test therefore takes all

error possibilities into account in assuring actual

stability. In the eigenvalue method, there is no such upper

boundary and therefore while the designer may insure that

the actual system will not be unstable with this particular

error, he has little idea of what will happen when a

different error is present (although an error of smaller

size, as defined by the 2-norm, is less likely to cause

instability).

For these reasons, this method is offered more as a

source of additional information and as a check when

utilizing the singular value test method for insuring

stability/robustness. For instance, if for a particular

design parameter constant value the eigenvalue method

indicates an unstable system, then clearly the plots of

A
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amin(sI - Aclh) and amax( Eacl ) should cross for that
*, constant value as test equation (3.1) stipulates they must.

U

0

0

0

"0
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Part IV

Standard Design Process

Description

The primary objective of this Trident Project is to

provide the practical engineer with certain methods which

can be used to address the stability/robustness problem in

MIMO control system design. It has been described how

heretofore this basically was not a tractable problem and as

a result certain guidelines were offered in Parts I and III

(Part II describing methodology on which later results would

be based) that can be used in the MIMO stability/robustness

case. Whatever the merits of these guidelines, they have

little value for the engineer unless they are integrated

into a coherent process that achieves the design objective

described above.

This part of the paper serves to realize such an

integration and yield a standard design process which the

engineer can follow when faced with a MIMO design problem.

No effort will be made here to replicate the development and

discussion of the methods in Parts I through III. Rather,

it will be shown how these techniques fit together and it is

up to the designer to go back in the paper and arrive at the

full understanding necessary for their use. Figures
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(19),(20), and (21) review the basic structure of the

nominal plant alone, the target feedback loop (TFL) used in

the MBC/LQG/LTR method, and the final controlled system

(MBC plus plant) discussed earlier and referred to below.

Formation and Discussion

U
A. Examine MIMO Nominal Plant Model and Specify Error

1. It is necessary to have a full understanding of the

nominal plant model as seen in Figure (19) before proceeding

to the design of a control system. This information tells

the designer (1) whether control is necessary at all, and

(2) if plant operation is not satisfactory, what type and

amount of control needs to be employed.

The first step is to assess the stability/robustness of

the MIMO nominal plant model. Both the open loop and closed

loop stability of the model are immediately determined by

calculating the eigenvalues of the A and Acl matrices. If

any of the eigenvalues have positive real parts, then

instability is present. All methodology presented in this

paper requires that the plant have nominal closed loop

stability. Failing that, either a new or revised plant

should be obtained or new methodology sought by the

designer. The project did not uncover any such workable
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FIGURE (19)
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DESIRED-

(CONTROL + PLANT)

FIGURE (20)
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CONTROL PLANT Gp(s)

FIGURE (21)
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methods in existence, making this an important area for

future research.

Each of the methods presented in Part I to gauge the

stability/robustness of the MIMO nominal plant model should

now be employed. The use of the deviation of parameters

method is straightforward and will give the designer a

.* direct feel for how close the plant is to instability. For

example, if only a five percent deviation between actual

and nominal values can be tolerated in each of the

* significant plant parameters, then the designer knows that

control will have to be added to make plant stability more

resistant to such changes. The plant's

stability/robustness must be enhanced. A precise

determination of how much and in what way the plant must be

modified to insure better stability/robustness is left to

other methods outlined below.

The singular value inequality test method is used next.

* This method will also provide the designer with information

about the nominal plant's stability/robustness but of a

different nature than the deviation of parameters technique.

* If the test reveals either that actual plant stability is

unsure or that it is guaranteed unstable, then control will

be a necessity.

2. The other portion of the nominal plant analysis
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involves a review of its performance characteristics. Open

and closed loop singular value plots, linear simulations to

different classes of inputs, and other measures of

performance should be obtained. Because this paper is

primarily concerned with stability, little more will be

offered in the way of description in this area. The

objective is to demonstrate where performance fits into the

overall design process that has been developed.

3. The definition of the error Eacl between the actual and

nominal closed loop A matrices (A and Acl) used in the

inequality test is all-important both here and below in the

design of the TFL. The designer needs to determine the

constant Eacl between the actual and nominal Acl matrices at

low frequency which is then extended across all

frequencies. Justification for and limitation of this

extension is offered in Parts I and III. As a last resort,

the designer should calculate a worst error Ew as discussed

in Part I and Appendix A.2 which represents the Eacl error

the nominal plant is theoretically most sensitive to in

terms of stability. The reason for using this worst error

as a default lies in the fact that if when the compensator

is designed below the worst case condition is taken into

account, then all other operating conditions will be assured

stable.

There is another factor in error determination.
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Finding complete error knowledge which encompasses all

possibilities at all operating conditions should be the

ideal, but it is not likely in practice. Rather, emphasis

is placed on determining the upper and lower bounds on this

error which are represented by amax and amin, respectively.

This is the information used in the singular value

inequality tests.

B. Design the TFL to meet Specifications

The analysis of the MIMO nominal plant tells the

designer what changes will be necessary in order to meet the

specifications for system operation. Part II describes the

TFL illustrated in Figure (20) and explains that it is used

to represent the desired behavior the system will exhibit

when control in the form of a MBC is added. For thi- reason

it is in the TFL that stability/robustness and performance

requirements are met.

1. The first step is to design for good

stability/robustness (it is highly unlikely that poor

* stability/robustness would be a system requirement) by

determining a bound on the TFL design parameter. This

process was described in Part III and involves use of the

* singular value inequality test as modified for the TFL. The

error Eacl that is required by the inequality test was
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described in section A above.

Particular attention should be paid to the situation

where, in the nominal plant model assessment, the deviation

of parameters method indicates the presence of poor

stability/robustness and the inequality test method does

not. Generally, this situation will mean the presence of

poor high frequency stability/robustness which may go

undetected in the latter method. As a result the designer

will want to add extra degrees of resistance to high

frequency errors. This is accomplished both by moving the

closed and open loop TFL singular value plots (Gclh and Gh)

down in value and by restricting the bandwidth of the closed

loop plot.

2. The outcome of this stability/robustness assessment for

the TFL is a boundary on the design parameter available to

change TFL operating characteristics. This design parameter

was shown in Part II to be a scalar that the designer

specifies when utilizing the software in Appendix B to

realize the TFL. The process now becomes:

a. Pick a scalar value from within the allowable
bounds for good stability/robustness.

b. Use Appendix B computer programs to calculate the
design matrix H and produce the TFL singular value
plots, linear simulation plots, or whatever else
is desired to analyze performance.

c. Is this performance satisfactory?

fop
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d. If so, the process is complete.

e. If not, the designer should pick a new scalar
within the specified bounds that will achieve
performance specifications. Return to step b.

C. TFL Recovery with the MBC

1. Having realized the TFL and decided that its operating

characteristics are those that the engineer desires the

controlled system (compensator plus plant) to possess, the

compensator must be designed. Within the MBC/LQG/LTR

methodology that is used in this project, this compensator

is referred to as a MBC and its formation is accomplished as

was described in Part Il. Essentially, the engineer must

use Appendix B software to calculate a matrix G that,

within the MBC structure shown in Figure (21), will to some

degree of accuracy recover TFL behavior once the MBC is

appended to the plant.

2. The process that yields a desirable G and therefore a

MBC is:

a. Pick a value for the scalar used to create G.

b. Use Appendix B computer programs to explicitly
calculate G and form the MBC.

4 c. Analyze the resulting controlled system in terms
of both stability/robustness and performance to
see if the TFL was effectively recovered.

4 2
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d. Check the magnitude of the controls in the MBC
during system operation.

e. Is this MBC satisfactory upon the analysis

provided in steps c and d?

f. If so, the process is complete.

g. If not, either pick a new scalar value for a
better recovery (lower in value) or pick a new
scalar for a poorer recovery that will reduce
control magnitudes (higher in value).

D. Testing

Little explanation is required here. Simply test the

controlled system in all types of operation, particularly

with regard to the presence of errors betwern the nominal

plant model and the actual plant. When errors that were

described in section A above and used in section B for TFL

design are applied, the controlled system should always

remain stable. When errors that were not provided for are

applied to the controlled system, the behavior that is

observed should be either stable or unstable depending on

the nature of the error applied.

S
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PART V

A Design Example

Description

An example is offered to elucidate both the concepts of

Parts I to III and their integration in the standard design

process of Part IV. Hopefully, the example will facilitate

the understanding necessary for the practical control

engineer to employ the methods presented in this paper in

real-world applications. The example does not illuminate

every facet of the methodology that has been offered in

this Trident Project but it does provide a basic summary of

the process. Each application is unique and the literature,

incorporating both this paper and those in the References,

should be consulted extensively to insure methods are being

applied correctly.

* It is stressed that this example is entirely

fictitious. No attempt should be made to compare it to an

actual turbine in any way. All the variables, parameters,

* and relationships have been arbitrarily chosen and named.

In this sense the example could best be termed a "generic"

MIMO design problem. The use of the turbine plant name and

* all other names is done purely for the benefit of the

reader. The intended result is the elimination of any
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"GENERIC" TURBINE EXAMPLE

DIAGRAM

TUR! (pE

DESCRIPTION

INPUTS: U1 =DESIRED SPEED

U2 = LOAD TORQUE

m OUTPUTS: Y1 PER UNIT TURBINE ROTOR SPEED

Y2 PER UNIT FUEL FLOW

PARAMETERS: (1) VALVE POSITIONER GAIN
(2) SPEED GOVERNOR GAIN
(3) FUEL SYSTEM FEEDBACK GAIN
(4) FUEL SYSTEM TIME CONSTANT

EQUATIONS: X AX + BU, Y = CX
ABIC = NOMINAL SYSTEM MATRICES

FIGURE (22)
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potential confusion caused by numerous and indistinguishable

inputs, outputs, and parameters.

Presentation and Discussion

A. Nominal Plant Analysis

I
Figure (22) summarizes the MIMO turbine nominal plant

model. The plant is comprised of two inputs, two outputs,

and four parameters and the mathematical formulation is

identical to that used in the previous parts of the paper.

The plant possesses nominal closed loop stability.

Figures (23) and (24) summarize the nominal plant

stability/robustness properties. The singular value test

inequalities (1.12) to (1.14) applied to Figure (23), where

the horizontal plot represents amax( Eacl ), indicate that

the actual plant alone (no control) could be either stable

or unstable. Recall that Eacl is the error between the

actual and nominal closed loop A matrices at low frequency.

Figure (24) is the result of applying the deviation of

parameters method. The original four parameters have been

reduced to two, the speed governor gain and fuel system time

constant, with significant effects on stability. Here

especially poor stability/robustness is apparent. The

combination of deviations that, simultaneously, limits the

E , emm aI a -l i II ilI
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NOMINAL PLANT: (si - Ae) & (Eacl) SINGULAR VALUES
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NOMINAL PLANT: ROTOR SPEED OUTPUT STEP RESPONSE
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FIGURE (25)



75

governor gain to 10% deviation and the time constant to 30%

deviation barely preserves stability.

Figure (25) illustrates the analysis of a nominal

plant performance condition, the rotor speed output when a
VA

step is applied at the desired speed input. One notes that

the 10 second time to peak represents a rather sluggish

system response.

A summary can now be made of the turbine MIMO nominal

plant model. Clearly, its stability/robustness properties

need to be improved through control. The nominal plant, in

conjunction with the error expected, in no way guarantees

stable operation for the turbine. A properly designed

compensator in the standard control feedback loop needs to

be appended to the plant to insure the good

stability/robustness that must exist in a plant such as a

turbine.

It was also observed that in at least one key

performance characteristic, the rotor speed step response,

nominal plant performance was also deficient. The

specification that this rotor step response must be improved

will be added to the obvious one of good

stability/robustness. Specifically, the requirements of a

10 rad/sec bandwidth to insure a fast time to peak (or

response time) and 0db closed loop unity gain between
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TFL: (sI- Aclh) & (Eaci) SINGULAR VALUES
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FIGURE (26)
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<TARGET LOOP> AND <,MBC + PLANT> CLOSED LOOP PLOTS
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FIGURE (27)
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TL: ROTOR SPEED OUTPUT STEP RESPONSE
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reference input and rotot output at low to mid frequencies

are made.a

Figure (26) shows the design in the Target Feedback

Loop (TFL) to meet singular value test inequality (3.1) and

thus insure good stability/robustness in the controlled

system upon recovery of the MBC. The scalar chosen to

obtain the TFL design parameter (H matrix) that gave Figure

(26) was one of a range a possible values provided by

Appendix B programs that would insure good

stability/robustness. It specifically was chosen and used

from that range of values because it was the scalar that

would give Figure (26) and result in the TFL closed loop

singular value plot shown in Figure (27). The controlled

system closed loop singular value plot, also in Figure (27),

demonstrates the near recovery of the TFL when the MBC is

added to the plant. Note that the closed loop plot meetsU

the design requirements of 0db unity gain at low to mid

frequencies and 10 rad/sec bandwidth.

Figure (28) shows the TFL rotor step response which

represents an improvement over the nominal plant behavior

due to the meeting of the closed loop performance

requirements in Figure (27). Figure (29) illustrates two

points. First, the near recovery of the TFL in the

controlled system in terms of output response is readily

apparent when Figures (28) and (29) are compared.
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Second, Figure (29) includes both an output response

with no error and one with error present. The controlled

system's output response when subjected to an error that was

included in the Eacl used for the stability/robustness test

is not unstable as was expected. Figure (30), however, is

an indication of what can happen when Eacl is not properly

* specified. In this case an error not included in the Eacl

used for the stability/robustness test was applied. A

highly unstable response is evident.

'0
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CONCLUSIONS

From the investigation outlined in this paper, the

following conclusions can be drawn about control system

design with desirable stability/robustness properties for

MIMO plants:

1. Singular values are an effective tool with which

to describe MIMO system behavior by bounding all

possibilities of operation inherent in the MIMO

case.

2. Error information for stability/robustness

singular value inequality tests developed prior to

this investigation was seen to be prohibitively

hard for the engineer to obtain.

3. The singular value inequality test method

detailed in this paper provides good

stability/robustness information about MIMO

systems at low to mid frequencies and may be

relevant at higher frequencies in some cases.

4. The error information required by the project

inequality test is more readily obtained by

engineer than that required by previous

techniques.

5. The deviation of parameters method developed in

this project provides valuable information about
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the nearness to instability of a MIMO nominal

plant model in terms of allowable parameter

variations; however, the method is limited to

plants with relatively few parameters that impact

significantly on stability.

6. The MBC/LQG/LTR design methodology is an effective

tool for MIMO control system formulation but its

ability to insure good stability/robustness hinges

on the availability of usable Target Feedback Loop

(TFL) singular value inequality tests.

7. The project procedures for stability/robustness

evaluation can be effectively used within the

MBC/LQG/LTR design framework by providing the TFL

tests that are needed.

8. The formulation of a standard design process that

combines all elements of both project and

MBC/LQG/LTR methodology enables the engineer to

tackle the MIMO control system design problem from

start to finish.

9. Performance requirements need not be disregarded

to insure good stability/robustness and are

provided for in the project standard design

process.

b
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SUGGESTIONS FOR FUTURE RESEARCH

Subsequent research into multivariable control system

design methods that insure good stability/robustness should

consider:

1. Singular value inequality tests that will preserve

stability/robustness at all frequencies and are

based on practical error information obtainable by

4 the engineer.

2. Ways to determine allowable parameter variations

which maintain stability when numerous parameters

with significant impacts on stability are present.

3. The capability to handle plants which do not

possess nominal closed loop stability, as both

project and MBC/LQG/LTR methodology require that

the plant possess nominal closed loop stability.

4. Use of nonlinear chaotic systems theory to assess

* actual pldnt operation and thus generate the error

between actual and nominal plants that

stability/robustness tests require.

0 . ,,k- _ e o ai I N i / m
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APPENDIX A

A-I. Singular Values (a)[6]

The singular values of a square n x n complex matrix A,
denoted by ai(A), are defined as

oi(A) = eigif(AHA) = eigi(AAH) (A.1)

where AH denotes the complex conjugate transpose of A and
eigi(AHA) the ith largest eigenvalue of AHA. A way of
representing the matrix A, known by the singular value
decomposition (SVD) is given by

n
A = USVH = Z ai(A)uiviH (A.2)

i=l
where

U = [ul,u2,...,un]; uHu = I (A.3)
V = [vl,v2,...,vn]; vHv =I (A.4)
S = diagonal[al,a2 ,...,an] (A.5)

and the columns of V and U are eigenvectors of AHA and AAH,
respectively. The minimum and maximum singular values
denoted amin and amax, respectively, are sometimes
equivalently defined in terms of the spectral xrtrix norm

as

amax(A) = max II Ax 1i2 = II A 112 (A.6)m ma () 14l2=0 ----

i x 112
and

amin(A) = min II Ax 112 (A.7)
IIxII1 x 112

= II A- 1 12- 1, if det A = 0

= 0, if det A = 0

The minimum singular value amin(A) provides a measure of the
nearness to singularity of the matrix A in the following
sense. If A+E is singular then

II E 112 = amax(E) >  amin(A) (A.8)
b

Some other useful singular values facts are

amax(A + B) < amax(A) + amax(B) (A.9)

b
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amin(A) = 1 (A.10)

amax (A-
if Omin(A) -- > 0, then eigmin(A) -- > 0 (A.11)

A-2. Calculation of Ew

Ew represents the error that the matrix A~l(nom) is most
sensitive to in terms of stability as defined by

Acl(act) = Acl(nom) + Ew

The minimum eigenvalue of any matrix A (absolute value,
assuming all have negative real parts) is an indicator of
how close A is to instability (an eigenvalue with a positive
real part). Also, (A.11) indicates the relationship between
eigmin(A) and amin(A). Therefore

If : amin(Acl) --> 0
* Then : The matrix Acl will be on the border of

stability

This leads to the conclusion that there must be some matrix
Ew, that when added to Acl(nom), will place Acl(act) just on
the border of stability by making amin(Acl(act)) go to zero.
Such an Ew is calculated by

Ew = -amin(Acl(nom)) * umin * Vmin H  (A.12)

where Umin corresponds to uI (A.3) and vmin corresponds to
v, (A.4) which are obtained from the SVD of Acl(nom).

The deviation of parameters method in Part I section C.2
uses Ew to identify parameters which impact significantly on
stability. However, the method requires an Ew that is
physically meaningful. By physically meaningful, it is
meant that Ew should only have elements that correspond to

* elements in the Acl matrix that will change when parameters
are deviated.

The effect of eliminating elements of Ew that are not
physically meaningful is that, when added to Acl(nom),
Acl(act) will generally no longer be on the border of

* instability. To rectify the problem, Ew(old) is first
calculated according to (A.12), then elements that are not
physically meaningful are eliminated, and finally a constant
x seen by

Ew(new) = -amin(Acl(nom)) * umin * vminH / x (A.13)

is generated by computer routines that will make Ew(new)
take Acl(act) to the border of instability just as Ew(old)
did.
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A-3. Proof of Singular Value Inequality Test (1.12)

The inequality test is:

IF : amin( sI - Acl(nom) ) > amax( Eacl
THEN : The actual system is guaranteed stable at low w

As w -- > 0, ( sI - Acl(nom) ) -- > -Acl(nom)

Proof:

(A.8) states that if (A + E) is singular then

amax(E) amin(A)

This implies that if (A + E) is nonsingular the
following inequality must hold:

amin(A) > amax(E)

Equation (1.10) defines the relationship between Eacl

and Acl(nom):

Acl(act) = Acl(nom) + Eacl

For stability, Acl(act) must be nonsingular which
gives:

amin( Acl(nom) ) > amax( Eacl

Furthermore it can be shown that

amin( Acl(nom) ) =min( -Acl(nom)

Combining the above:

amin( -Acl(nom) ) > amax( Eacl

which is a proof of inequality test (1.12) as w --> 0



APPE~NDIX B

MBC/LOG/LTR Method Function Files

AUGINT NOTSEMID RETSS
CLMBCMAT QCOMPGN SVCLINV
CLYFIIATR QMBCDES SVPLOTS
COMPGN QMBCDESA SVRETDIF
MBCDES QNTSEMID TARGHI
MBCDESA QTARG TARGHLA

4MBCMTRIX QTARGA TARGLOW
MBCSTEPS

Deviation of Parameter Method Function Files

DEVPAR1 DIRECT FINDX
DEVPAR2 DRXTOEW REDUCEA
DEVPAR3 EWTODVP RETSS

Singular Value Inequality Method Function Files

EATOMUl SVEATOMU SVPHI
RETSS

General Purposel Fucin ie

AUGINT NOTSEMID SVCLINV
CLYFMATR QNTSEMID SVPHI
DIRECT REDUCEA SVPLOTS
DRXTOEW RETSS SVRETDIF
FINDX

Example State Space Representation Function Files

APROB BPROB NETRET
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I APROB

Command Line

[a,b,c,d] = aprob(v)

Description

this function provides an example set of a,b,c, and d
matrices which can be used to learn and test other
functions provided in this package

this example is an RC network with 3 resistors
(rl...r3) and 3 capacitors (ci... c3)

calculates a,b,c & d matrices for the resistor
and capacitor values entered as input arguments;
contains 1 input, 3 states and 1 output

v = vector containing parameters:
rl=v(l) ,,, r3=v(3) ,cl=v(4) ,, ,c(3)=v(6)

3

U
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function [a,b,c,d] = aprob(v)
%APROB [a,b,c,d] = aprob(v)

rl=v();r2=v(2);r=v(3);c1~v(4)c2V(5)c
3 =v( 6 );

a = [-l/(r1*c1)-l/(r2*cl) 1/(r2*cl) 0
1/(r2*c2) -1/(r2*c2) 0
0 0 -1/ (r3*c3)]

b = [!/(rl*cl); 0 ;1/(r3*c3) ]
C [0r 1 0];
d [01;
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AUGINT

Command Line

[aa,ba,ca,da] augint(a,b,c,d)

or [aa,ba,ca] = augint(ab,c)

Description

augments plant matrices by placing an integrator
at each plant input channel

the result is a system which will generate a zero
steady-state error when subjected to constant
command or disturbance inputs

a,b,c,d = original plant matrices
aa,ba,ca,da = augmented plant matrices

a (n,n) --- > aa (n+m,n+m)
b (n,m) --- > ba (n+m,m)
c (m,n) --- > ca (m,n+m)
d (m,m) --- > da (m,m)

It

- - .4, N mm m m - m m m m m m l .... l -
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function [aa,ba,ca,da] augint(a,bc,d)
%AUGINT (aa,ba,ca,da] =augint(a,b,c,d)

% or [aa,ba,cal augint(a,b,c)

(n,znl = size(b);
aa = [zeros(m,m) zeros(m,n); b a];
ba = C eye (m) ; zeros (n, m)]
ca = [zeros(m,m) c];
narg = nargin;
if Cnarg == 4

da d;
end
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U BPROB

Command Line

[a,b,c,d] = bprob(v)

Description

this function provides an example set of a,b,c, and d
matrices which can be used to learn and test other
functions provided in this package

this example is an RC network with 3 resistors
(rl...r3) and 3 capacitors (cl...c3)

calculates a,b,c & d matrices for the resistor
and capacitor values entered as input arguments;
contains 1 input, 3 states and 1 output

v = vector containing parameters:
rl=v(l) ,,,r3=v(3),cl=v(4) ,,,c(3)=v(6)

b

b



96

function [a,b,c,d] = bprob(v)

%BPROB [a,b,c,d] = bprob(v)

rl=v(1) ;r2=v(2) ;r3=V(3) ;cl=v(4) ;c2=v(5) ;c3=v(6);

a = [(-rl+r2)/(rl+r2) 1/r2 1/rl+l/r2
-1/(r3*cl) r3/(r2+r3) 0
0 1 -(r3*c2)/(c3-c2)];

b = [1; 10; 1],;
c =[1 0 0];
d =[0]';
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CLMBCMAT

Command Line

[ac,bc,cc,ccu,dc] = clmbcmat(a,b,c,d,g,h)

or [ac,bc,cc,ccu] = clmbcmat(a,b,c,g,h)

Description

creates the closed loop matrices for a plant which
has a MBC compensator added to the forward path

the system is describes by the following equations
where z represents the states of the MBC and x the
states of the plant:

xdot = ax - bgz, zdot = hcx + a-bg-hc-hdgz - hr
y = cx - dgz , u = -gz

a,b,c,d = open loop plant matrices
ac,bc,cc,dc = closed loop < MBC + Plant > matrices
ac,bc,ccu,dc = closed loop < MBC + Plant > matrices

(which have the control efforts as outputs)

g = MBC gain matrix
h = target loop, kalman filter design gain matrix
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function [ac,bc,ccccu,dcI clmbcmat(a,b,c,d,g,h)
%CLMBCMAT [ac,bc,cc,ccu,dcj clmbcmat(a,b,c,d,g,h)

Lim %or [ac,bc,cc,ccu] clumbcmat(a,b,c,g,h)

[n,m] = size (b) ;

ac = [a -b*g;h*c a-b*g-h*c-h*d*g];
zml = zeros(n,m);
bc =[zml;-h];
zm2 = zeros(m,n);

oc= c -d*g];
ccu = [zm2 -g];
narg = nargin;
if (narg == 6

eddc =d;

4en
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* CLYFMATR

Command Line

[ac,bc,cc,dc] = clyfmatr(a,b,c,d)
0 or [ac,bc,cc] = clyfmatr(a,b,c)

Description

creates closed loop matrices from open loop matrices

utilizes a feedback loop which feeds back the outputs
(y or unity feedback) to be compared with the reference
inputs r as seen by:

u = r - y = r - Cx

a,b,c,d = open loop plant matrices
ac,bc,cc,dc = closed loop matrices

U

U
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function [acbc,cc,dc] clyfmatr(a,b,c,d)
%CLYFM4ATR (ac,bc,cc,dcj clyfmatr(a,b,c,d)
% or [ac,bc,cc] =clyfmatr(a,b,c)

[n,m] =size(b);

ac = a - b*c;
bc = b
cc = c;
narg = nargin;
if (narg == 4

dc =zeros(m);

end
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U COMPGN

Command Line

(g,svolk, svsek, svclk] = compgn(a,b, c,d,h,w,pl)
or [g,svolk,svsek,svclk] = compgn(a,b,c,d,hw)

Description

computes the model-based compensator (MBC) gain, G,
using the lqr algorithm and the expression:

q = cf*c

g = MBC gain
h = target loop, kalman filter gain

svolk% = singular values for K(s) = G*inv(sI-A+BG+HC)*H
svsex~ = singular values for S(s) = inv(I+K)
svclk = singular values for C(s) = inv(I+K)*K

w =frequency range, p = scalar row (entered at run
time)

p1 1 ==> plots sent to screen (default if p1
not included in command line)

p1 0 =>plots not sent to screen
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function (g,svolk,svsek,svclk] compgn(a,b,c,d,h,w,pl)
%COMPGN [g,svolk,svsek,svclk] =compgn(a,b,c,d,h,w,pl)

% or [g,svolk,svsek,svclk] compgn(a,b,c,d,h,w)

narg = nargin;
if (narg == 6

p1 = 1;
end

q =fc

if (any(eig(q) < 0)
disp('q < MBC > is not a positive semi-definite

matrix')
* disp(' a revised q must be calculated to make it so'),

newq = notsemid(q);
q = newq;

end

r = eye(min(size(c)));

p = input(' Enter a value for row, p=
if (p < 0)

error(' Row, p, must be a positive scalar '
end

disp(' BE PATIENT- IT WILL TAKE A FEW SECONDS TO COMPUTE)

disp(' G AND THE COMPENSATOR SINGULAR VALUE PLOTS '

g =lqr(a,b,q,p*r);

ak =a-b*g-h*c;

bk =h;

ck g;
dk =zeros(min(sizelc)));

(svolk,svsek,svclk] =svplots(ak,bk,ck,dk,w,pl);

0
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DEVPAR1

Command Line

[maxeig,dev] = devparl(tol,par,v,slsys,slocl,np)

Description

this function plots the maximum system eigenvalues
versus the percent deviation of the parameter specified

tol = tolerance of the parameter deviation
par = # of desired parameter to be deviated, v(par)
v = vector of nominal parameter values

ie. = [rl;r2;... ;c2;c3]
slsys = number of system to be called in RETSS
slocl = 0 ==> select open loop option

= 1 ==> select closed loop option
np= # of desired deviations

i2

i . .. .. .. I f i l I i
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function (maxeig,dev] = devparl(tol,par,v,slsys,slocl,np)
%DEVPAR1 (maxeig,dev] = devparl(tol,par,v,slsys,slocl,np)

lv = length(v);
vcof = zeros(lv,l);

if ( tol > .99
toll = -.99;

eletoll = -tol;
end

for i=l:np+l
dev(i) =toll + (i-l)*(tol - toll)/np;

g vcof(par) =dev(i);,

[ax,bx,cx] errvcof(vcof,v,slsys);
if ( slocl == 1

eigval =eig(ax-bx*cx);

elseif ( slocl == 0)
eigval = eig(ax);

* else
error('select <1> closed or <0> open!*)

end

edmaxeig(i) = max(real(eigval));

* plot(dev,maxeig, 1*1)
xlabel( '% deviation') ;ylabel( 'max eigenvalue');
title('l PARAMETER DEV: MAX EIGENVALUE VS. % DEVIATION')
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*] DEVPAR2

Command Line

[phplane,devl] = devpar2(tol,pars,v,slsys,slocl,np)

Description

this function plots a stability region plot for
deviations in two specified parameters

after execution of the program a plot is obtained by:

axis([-tol(l) tol(l) -tol(2) tol(2)])
plot(devl,phplane,'*')
axis note: this done to auto-range axis again

6 tol = vector of tolerances in parameter deviations
= [tol(l);tol(2)]

pars = vector of selected parameters
= [pars(1) ;pars(2) ]

v = vector of nominal parameter values
ie. = [rl;r2;... ;c2;c3]

slsys = number of system to be called in RETSS
slocl = 0 ==> select open loop option

= 1 ==> select closed loop option
np = vector of # of deviations for each parameter

= (np(1) ;np(2)]

O
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function (phplane,devl] = devpar2 (tol,pars,v,slsysslocl,np)
%DEVPAR2 [phplane,devlj = devpar2(tol..pars,v,slsys,slocl,np)

lv = length(v);
vcof = zeros (lv,1);

if ( tol(l) > .99
till = -.99;

eletll = -tol(l);
end
if ( tol(2) > .99

t121 = -.99;
else

t121 = -tol(2);
end
cig
axis(ttlll tol(l) t121. tol(2)])
hold on
np =np - 1;
for i=l:np(l)+l

devl(i) = till + (tol~l) - tlll)*(i-l)/np(l);
vcof(pars(l)) = devI~i);
for k=l:np(2)+l

dev2(k) = t121 + (tol(2) - t121)*(k-l)/np(2);
vcof(pars(2)) = dev2(k);
[ax,bx,cx] =errvcof(vcof,v,slsys);

if ( sloci == 1
eigval =eig(ax-bx*cx);

elseif ( sloci == 0)
eigval = eig(ax);

else
error('select <1> closed or <0> open!')

end
meigval =max(real(eigval));

if ( meigval >= 0.0)
plot(devl(i) ,dev2(k) ,'*')
phplane(ik) = dev2(k);

else
phplane(i,k) = 2*tl2l;

end
end

end
hold off

4 axis('normal')
grid
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U DEVPAR3

Command Line

[zu,zl] = devpar3(tol,pars,v,slsys,slocl,np)

Description

this function plots an upper and lower stability region
plot for deviations in three parameters

pars(l) and pars(2) are represented on the x and y axis
while pars(3) is on the z axis; therefore the command,
after execution of the function:

mesh (zu)
will give the allowable deviations in pars(l), pars(2)

b and positive deviations of pars(3), while the command:
mesh(zl)

will give the allowable deviations in pars(l), pars(2)
and negative deviations of pars(3)

tol = vector of tolerances in parameter deviations
= [tol(1) ;tol(2) ;tol(3)]

pars = vector of selected parameters
= [pars(l);pars(2);pars(3)]

v = vector of nominal parameter values
ie. = [rl;r2;...;c2;c3]

slsys = number of system to be used in RETSS
slocl = 0 ==> select open loop option

= 1 ==> select closed loop option
np = vector of # of deviations for each parameter

= [np(l);np(2);np(3)]

b
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fucinF.~l epr(tlpr~~ly~lc~p
function [zu,z1] = devpar3(tol,pars,v,slsys,slocl,np)

Iv = length(v);
vcof = zeros(lv,i);

if ( tol(l) > .99
till = -.99;

eletll = -tol(l);
end
if ( tol(2) > .99

t121 = -.99;
else

t121 = -tol(2);
end
if ( tol(3) > .99

t131 = -.99;
else

t131 = -tol(3);
* end

ii = (toi (1) - tll) /np(1) ;
i2 = (tol (2) - t121) /np (2) ;

* [devl,dev2J = meshdom(tlli:il:tol(i), t121:i2:tol(2));
for i=l:(np(3)/2+l)

dev3u(i) = (i-l)*tol(3)/(np(3)/2+1);
dev3l(i) = (i-l)*t131/(np(3)/2+l);

end
ctl = 0;
ct2 = 0;
ct3 = 0;
[n,m] = size(devl);
for i=i:n

cti = ctl+l
for k=l:m

ct2 = ct2+l
vcof(pars(l)) = devl(i,k);
vcof(pars(2)) = dev2(ik);

* zu(i,k) = 0.0;
zl(i,k) = 0.0;
for q=l: (np(3)/2+l)

ct3 = ct3+l
vcof(pars(3)) = dev3u(q);
[ax,bx,cx] =errvcof(vcof,v,slsys);

* if ( sloci == 1
eigjval =eig(ax-bx*cx);

elseif ( sloci == 0
eigval = eig(ax);

else
error('select <1> closed or <0> open!'

end
meigjval = max(real(eigval));
if ( meigval >= 0.0
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break
else

zut'i,k) =dev3u(q);

* end
end
for q=1: (np(3)/2+l)

ct3 = ct3+l
vcof(pars(3)) = dev3l(q);
(ax,bx,cxl errvcof(vcof,v,slsys);

-if ( sloci I= 1
eigval =eig(ax-bx*cx);

elseif ( sloci =~= 0)
eigval = eig (ax);

else
error('select <1> closed or <0> open!'

end
meigval = max(real(eigval));
if ( meigval >= 0.0

break

elezl (i, k) =dev31 (q);
end

end
end

end

Uhold on
mesh (zu)
mesh(zl)
hold off

-4
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DIRECT

command Line

[dr) = direct(a,nsv)

Description

this function computes the singular value decomposition
(SVD) of the matrix a and then calculates:

dr = u * vH

where u and vH are vectors from the SVD(a) and
correspond to whatever singular value(a) was specified
by nsv

dr is used to find an error E = -amin(a)*dr such that
*when E is added to a (a+E), whatever singular value was

specified in the calculation of dr will go to zero in
(a+E)

nsv = which singular value you want to go to zero
ex: nsv = 1, choose minimum singular value

nsv = 2, choose next largest singular value

nsv = n, choose maximum singular value

S

0-

S

0



function [dr) direct(a,nsv)
%DIRECT [dr] direct(a,nsv)

narg = nargin;
if ( narg ==1

nsv 1
end

[uo,s,v = svd(a);

[n,m] = size(a)
if (nsv > n)

error(' nsv is too large, exceeds size of matrix!! '
end
r =(n+1) - nsv;

ul =u(1:n,r);

v1 v(1:n,r);
dr =ul*vl';
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DRXTOEW

Command Line

[ew,xlow] = drxtoew(pars,v,slsys,slocl,npx)

Description

this function generates a worst case error for
stability Ew that is physically meaningful

by worst case error for stability, it is meant that Ew
represents the minimum error in the least likely
direction that will make the minimum singular value of
(a+Ew) go to zero (a for open loop case; acl for
closed loop case)

by physically meaningful, it is meant that Ew contains
only elements that correspond to elements in the matrix
a which will vary when the parameters that make up the
matrix a are varied

the function DIRECT is used to find an error Ew that is
not physically meaningful; elements that do not have
physical meaning are then eliminated; the function
FINDX is then used to find a constant xlow which is
used to modify the Ew with elements missing to again
be a worst case error for stability for the matrix a
(this is the Ew outputted by the function)

npx = number of points used to determine xlow in
the function FINDX

npx = 500 if npx not included in input arguments

* slocl = 0 ==> select open loop option
slocl = 1 ==> select closed lcop option

slsys = number of system to be evaluated as required by
the function RETSS

4 v = vector containing nominal parameter values
required by the function RETSS

pars = vector of parameters that will change in system
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function [ew,xlow] = drxtoew(pars,v,slsys,slocl,npx)
%DRXTOEW [ew,xlow] = drxtoew(pars,v,slsys,slocl,npx)

ipars = length(pars);
Iv = length(v);
[a,b,c] = retss(v,slsys);
for i=l:lpars

v(pars(i)) = v(pars(i)) + IiO*v(pars(i));
end
[ax,bx,cx] retss(v,slsys);

if ( sloci = 0
svmina =min(svd(a));

dr = direct(a);
etem = ax -a;

elseif ( sloci = 1
svmina = min(svd(a-b*c));
dr = direct(a-b*c);
etem = (ax-bx*cx) - (a-b*c);

eleerror('open <0> or closed <1> loop are the choices!')
end

(n,m] = size(dr);
drx = zeros (n, m);
for i=l:n

for j=l:m
if ( etem(i,j) -= 0.0000

drx(i,j) =dr(i,j);

end
end

end

if (drx == zeros(n,m)
disp('An EA which will affect only the parameters')
disp('in pars and will result in a minimum eigenvalue')

disp('of zero cannot be calculated -- drx is a zeros')
disp( 'matrix!!!')
error('reenter with different pars')

end

narg = nargin;
if (narg == 4

npx = 500;
end

if (slocl == 0
xlow = findx(a,drx,npx,0);

else
00 xlow = findx(a-b*c,drx,npx,0);

end
ea = -svmina*drx/xlow;

ew = ea;
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EATOMUl

Command Line

[mulow,mu,pl) = eatomul(ea,a,b,c,lomu,himu,npmu)

Description

this function produces a plot of the eigenvalues of:
(a - hc + ea)

versus the scalar (mu) used to calculate h

where:
ea = error between nominal and actual system

closed loop a matrices

* a run-time choice is given as to whether the bcalar
variations are to occur when singular values are shaped
at low or high frequencies

after execution of the function, typing the command:
plot(mu,pl, '*)

will produce the plot

mulow = value of the.scalar that gave the minimum
eigenvalue with the smallest absolute value

lowmu = smallest value of thn scalar to be tested
himu = largest value of the scalar to be tested
npmu = number of scalar values to be tested

10

0

K_ - -- -I .
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function [mulow,mu,pl] = eatomul(ea,a,b,c,lomu,himu,npmu)
%EATOMU1 [mulow,mu,pl] = eatomul(ea,a,b,c,lomu,himu,npmu)

disp(' Do you wish to match the singular values of the '
disp(' target loop at low or high frequencies?')
flag = input(' Type 0 for low or 1 for high:')

eiglow =l.e1O;

mulow 1 .e1O;

for i=l:npmu+l
mu(i) = lomu + (i-l)*(himu-lomu)/npmu;
if ( flag == 0 )

1 =-c'*inv(c*inv(a)*c');

elseif Cflag == 1
1 =l(~c)

else
error(Ilow <0> or high <1> are the only choices!')

end

q=1*'
if Cany(eig(q) < 0)

newq = qntsemid(q);
q = newq;

end
r = mu(i)*eye(min(size(c)));U h = lqe(a,eye(a),c,q,r);

eigval =eig((a-h*c) + ea);
p1(i) =max(real(eigval));

if ( abs(pl(i)) < abs(eiglow)
mulow =mu(i);

edeiglow p1(i);
end

plot(mu,pl, '*S)
xlabel ('mu value') ;ylabel ('max cl eigenvalue')
title('MAX CL LOOP EIGENVALUE VS. MU VALUE -USING EA')
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EWTODVP

Command Line

newr,parsr] = ewtodvp(ew,xew,pars,v,slocl,slsys)

Description

this function produces a vector of system parameters
(reduced from the original vector pars) that have

* significant impacts on system stability given the
values of the tolerances entered at run-time

the tolerances entered at run-time are:

* tlear (see tol in REDUCEA)
* tlpar which is a tolerance used to compare

the change in the maximum real eigenvalue of
the system when a parameter is deviated

see the function DRXTOEW for an explanation of all the

command line input arguments (xew is xlow)

the basic procedure used in this function is:

1. enter with worst error from DRXTOEW
2. enter with a list of nominal system parameters

of interest- this is pars
3. reduce that error using REDUCEA (get errorl)
4. deviate a system parameter
5. compute new worst, reduced error using deviated

parameter (get error2)
6. compare maximum real eigenvalues of errorl and

* erro12
7. if difference > tlea then parsr = pars, quit
8. if difference < tlea then parsr = pars minus

the deviated parameter; using parsr instead of
pars, return to step (1)

* ewr = last worst, reduced error used to test parameters

O



117

function [ewr,parsr] = ewtodvp(ew,xew,pars,v,slocl,slsys)
%EWTODVP [ewr,parsr] = ewtodvp(ew,xew,pars,v,slocl,slsys)

ea = ew;xea = xew;
[a,b,c] =retss(v,slsys);

ac = a -b*c;

disp('The maximum real eigenvalue of a + ea
if ( sloci == 1

eigea = max(real(eig(ac+ea)))
elseif ( sloci == 0

eigea = max(real(eig(a+ea)))
else

ederror('choices are <1> closed or <0> open loop!')

tlear =input('Enter the tolerance used to reduce ea, tlear
= 1);

tlpar =input('Enter the tolerance used to reduce pars,
tlpar

while 1
if ( slocl =

ear =reducea(ea,ac,tlear);
eigear = max(real(eig(ac+ear)));

else
ear = reducea(ea,a,tlear);
eigear = max(real(eig(a+ear)));

end

lpars = length(pars);
lv = length(v);
[e,f] = size(ear);
parst =[;
countl = 0;
for w=l:lpars

vxl = v;vx2 = v
vxl(pars(w)) = v(pars(w)) + .50*v(pars(w));
for z=l:lpars

vx2(pars(z)) = v(pars(z)) + .50*v(pars(z));
end
[axl,bxl,cxl] = retss(vxl,slsys);
[ax2,bx2,cx2] = retss(vx2,slsys);

if ( slocl == 0
svminax = min(svd(axl));
dr = direct(axij;
etem = ax2 - a;

else
svminax = min(svd(axl-bxl*cxl));
dr = direct(axl-bxl*cxl);
etem = (ax2-bx2*cx2) - (a-b*c);

end
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[n,m] = size(dr);
drx = zeros(n,m);

for i=3.:n
for j=l:m

if ( etem(i,j) -=0.0000)

drx(i,j) =dr(i,j);

end
end

end

if (drx == zeros(n,m)
disp('An EA which will affect only the

paraetes') disp('in pars and will result in a minimumi
eigenvalue')

disp('of zero cannot be calculated -- drx is
a zeros')

disp( 'matrix!!!')
error('reenter with different pars')

* end
eax =-svminax*drx/xea;
earx = reducea(eaxac,tlear);
if ( slocl == 1

eicrearx = max(real(eig(ac + earx)));
else

eigearx = max(real(eig(a + earx)));
end
test = abs(eigearx - eigear);
flag = 0;
for k=l:e

for p=l:f
if(ear(k,p)-=0.0 & test>tlpar)

flag = 1;
countl = countl+l;
parst(countl) =pars(w);

break
end

* end
if (flag == 1I

break
end

end
end

lparst = length(parst);
if ( lparst == ipars

break
else

*0 end pars =parst;

end
parsr = pars;
ewr = ear;

0
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€ FINDX

Command Line

[xlow,svminlow,x,svmin] = findx'a,drx,np,pl)

or [xlow,svminlow,x,svmin] = findx(a,drx,np)

Description

provides plot of the minimum singular value (amin) of:
a - amin(a)*drx/x

versus x

where:
x is some constant, whose range is specified
by lldrxII 2 -2 +or- .25

drx is Umin * VminH (from SVD of a) with
elements eliminated that do not have physical
meaning (do not correspond to elements of a
that vary when parameters are varied)

the plot can be produced with the command:
plot(x,svmin,'*')

after execution of this function

from this plot the x value, xlow, that corresponds to
the smallest amin of the expression above, svminlow, is
found

the function DRXTOEW uses this xlow to calculate an Ew
which, when added to a, makes (a + Ew) on the border of
instability

pl = 1 ==> plot sent to screen (default if pl not
included in input arguments)

pl = other ==> plot not sent to screen

np = number of points used to construct the plot
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function [xlow,svmiilow,x,svmfil] = findx(a,drx,np,pl)
%FINDX [xlow,svmifllow,x,svmil] = findx(a,drx,np,pl)

narg = nargin;
if ( narg ==3

P1 =1

end

svmina = min(svd(a));

nmdrx = norm (drx);
nmsqrd = nmdrx^2;
lo nmsqrd - .25;
if (lo < 0.0)

edlo = 0.0001;

hi nmsqrd + .25;

xlow = nmsqrd;
svminlow = min(svd(a - svmina*drx/x1ow));

for i=1:np+1
x(i) = 1o + (i-1)*(hi-lo)/lp;
svmin(i) = min(svd(a-svmina*drx/x(i)));
if (svmin(i) < svminlow

xlow = i)

edsvininlow = svmin(i);

end

if (p1 ==1

plot(x,svmin) ;xlabel('x value') ;ylabel('mil sv');
grid;title('MIN SV VS. X: SVD(A-SVMINA*DRX/X')

end

ro

0
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U MBCDES

Command Line

[g,h,svolf,svsef,svclf,svolh,svseh,svclh] =
mbcdes(a,b,c,d,w,pl)

or

[g,h,svolf,svsef,svclf,svolh,svseh,svclh] =
mbcdes(a,b,c,dw)

Description

design an MBC compensator for a plant with matrices
A,B,C & D (plant not augmented with integrators at the
input channels)

a target loop with transfer function:

Gkf(s) = C*inv(sI-A)*H

is designed first- this is the desired (MBC + Plant)

Vsvolh, svseh, and svclh are the singular value plots
for the target loop open, sensitivity, and closed loop
plots (see TARGHI AND TARGLOW)

the MBC gain G is found next- this is used to 'recover'
* the target loop when the MBC is added to the plant; the

MBC has the transfer function:

K(s) = G*inv(sI-A+B*G+H*C)*H

the plant has the transfer function:

Gp(s)=C*inv(sI-A)*B

you will be asked if singular values should be matched
at low or high frequencies in the target loop-- this
will affect the calculation of H

you will also be asked for values of the scalars:
* mu, u; used in target loop design (H matrix)
* row, p; used in target loop recovery (G matrix)

g = MBC gain matrix
h = target loop, kalman filter gain matrix

svolf = singular values for G(s)=Gp(s)*K(s)
svsef = singular values for S(s)=inv(I+G(s))
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svclf = singular values for C(s)=iriv(I+G(s))*G(s)

a,b,c,d =plant matrices, w = frequency range

p1 = 1 =>plots sent to screen (default if
p1 not included in command line)

p1 = 0 =>plots not sent to screen

4

4
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function (g,h, svolf,svsef,svclf,svolh,svseh,svclh]-
mbcdes(ab,c,d,w,pl)
%MBCDES [g,h,svolf,svsef,svclf,svolh,svseh,svclh]*bdsab~~~~l
% or [g,h,svolf,svsef,svclf,svolh,svseh,svclh]-

mbcdes(a,b,c,d,w)

narg = nargin;
if ( narg == 5

-P l=l1;
end

disp(' Do you wish to match the singular values of the '
disp(' target loop at high or low frequencies?')
flag = input(' Type 0 for low or 1 for high: )

if ( flag == 0 )
[h,svolh,svseh,svclh] = targlow(ab,c,d,w,pl);

elseif ( flag == 1 )
[h,svolh,svseh,svclh] = targhi(a,bgc,d,w,pl);

eleerror(' low <0> or high <1> are the only choices!! '
end

g =compgn(a,b,c,d,h,w,pl);

ak =a - b*g -h*c;wbk h;
ck g;

[af,bf,cf,df] series(ak,bk,ck,dlc,ab,c,d);

disp(' BE PATIENT- IT WILL TAKE A FEW SECONDS TO COMPUTE)

disp(' THE < MBC + PLANT > SINGULAR VALUE PLOTS '

[svolf,svsef,svclf] = svplots(af,bf,cf,df,w,pl);
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MBCDESA

Command Line

[ga,ha,svolf,svsef,svclf,svolh,svseh,svclh] =
mbcdesa(a,b,c,d,w,pl)

or

[ga,ha,svolf,svsef,svclf,svolh,svseh,svclh] =

mbcdesa(a,b,c,d,w)

Description

design an MBC compensator for a plant with matrices
A,B,C & D -- plant is augmented with integrators at
the input channels to produce a zero steady state
error

a target loop with transfer function:

Gkf(s)=CA*inv(sI-AA)*HA

is designed first- this is the desired (MBC + Plant)

the MBC gain GA is found next- this is used to
'recover' the desired target loop when the MBC is
added to the plant; the MBC transfer function is:

K(s)=GA*inv(sI-AA+BA*GA+HA*CA)*HA

the augmented plant has the transfer function:

Gp(s)=CA*inv(sI-AA)*BA

* the singular values of the target loop will
automatically be matched at both high and low
frequencies due to the extra degrees of freedom
provided by the integrators

you will be asked for values of the scalars:
* * mu, u; used in target loop design (H matrix)

* row, p; used in target loop recovery (G matrix)

ha = target loop, kalman filter gain
for augmented plant

ga = MBC gain matrix for augmented plant

svolf = singular values for G(s)=Gp(s)*K(s)
svsef = singular values for S(s)=inv(I+G(s))
svclf = singular values for C(s)=inv(I+G(s))*G(s)
svl0 iglrvle o ~)ivIGs)Gs
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a,b,c,d = plant matrices
aa,ba,ca,da = augmented plant matrices

(integrators added at each input channel)
w = frequency range

pl = 1 ==> plots sent to screen (default if
pl not included in command line)

pl = 0 ==> plots not sent to screen
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function (ga,ha,svolf,svsef,svclf,svolh,svseh,svclh]
mbcdesa (a,b,c,d,w,pl)
%HBCDESA (ga,ha,svolf,svsef,svclf,svolh,svseh,svclh]
mbcdesa(a,b,c,d,w,pl)
% or [ga,ha,svolf,svsef,svclf,svolh,svseh,svclh]

mbcdesa (a,b,c,d,w)

narg = nargin;
if ( narg == 5

p1 = 1;
end

[ha,svolh,svseh,svclh] = targhla(a,b,c,d,w,pl);

[aa,ba,ca,daj = augint(a,b,c,d);

ga =compgn(aa,ba,ca,da,ha,w,pl);

aka =aa - ba*ga - ha*ca;
bka =ha;

cka ga;
dka =da;

[afa,bfa,cfa,dfa] = series(aka,bka,cka,*dka,aa,ba,ca,da);

disp(' BE PATIENT-- I1T WILL TAKE A FEW SECONDS TO COMPUTE '

disp(' THE < MBC + PLANT > SINGULAR VALUE PLOTS '

(svolf,svsef,svclf] =svplots(afa,bfa,cfa,dfa,w,pl);
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Li MBCMTRI X

Command Line

Ok [ak,bk,ck,dk,af,bf,cf,df] = mbcmtrix(a,b,c,d,g,h)

Description

returns the MBC compensator matrices and the
< MBC + Plant > matrices given:

g = MEC gain matrix used in target loop
recovery

h = target (or desired) loop, kalman filter
gain matrix

ak,bk,ck,dk = MEC compensator matrices
af,bf,cf,df = < MBC + Plant > matrices
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function [al,bkOi-,ck,dk,af,bf,cf,df] =mbcmtrix(a,b,c,d,g,h)

%MBCMTRIX Eak,bk,ck,dk,af,bf,cf,df] =mbcmtrix(a,b,c,d,g,h)

ak = a - b*g -h*c;

bk =-h

ck =-g;
dk = d;

[af,bf,cf,df] =series(ak,bk,ck,dk,a,b,c,d);
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MBCSTEPS

Command Line

[yfc,yfuc,yhc] = mbcsteps(a,b,c,d,t,iu,h,g)
or [yfc,yfuc,yhc] = mbcsteps(a,b,c,d,t,iu,h)
or [yfc,yfuc,ych] = mbcsteps(a,b,c,d,t,iu)

Description

gives the closed loop < MBC + Plant > output and
control effort and closed loop < Target Loop >
output step responses for a specified input

this function will either evaluate these step responses
for a specified h and/or g (and thus a specified MBC to
be added to the plant) or allow for the design and
computation of an MBC to be added to the plant; once
the MBC is found it is combined with the plant and step
responses evaluated

in either case the step responses of the target loop,
yhc, are included for the h either provided or found
within the function

the functions QMBCDES, QMBCDESA, AUGINT, and QCOMPGN
are used to form the target loop and/or MBC according
to what information is included in the command line if
both h and g are not provided

the function CLYFMATR is used to form the closed loop
target loop matrices to which step responses are
applied to get yhc

the function CLMBCMAT is used to form the closed loop
MBC matrices, when both g and h have been either found
or inputted, to which step responses are applied to get
the <MBC + Plant> output response, yfc, and the MBC
control effort response, yfuc.

- ..... 
+

-"
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function [yfc,yfuc,yhc] =mbcsteps(a,b,c,d,tiu,h,g)

%MBCSTEPS [yfc,yfucyhc] = mbcsteps(a,b,c,d,t,iu,h,g)
% or [yfc,yfuc,ych] = mbcsteps(a,b,c,d,t,iu)

narg = nargin;
if ( narg < 8

if (narg ==6

disp(' Do you want the plant to be augmented with

inte- disp(' grators at the plant input channels- choose
no if '

disp(I you are entering an h- ?')
flag = input(' Type 0 for no and 1 for yes: ');
disp(' '),
if ( flag ==0)

[g,h] =qmbcdes(a,b,c,d);

elseif ( flag == 1 )
[g,h] = qmbcdesa(a,b,c,d);
[a,b,c,d] = augint(a,b,c,d);

else
0 error('no <0> and yes <1> are the only

choices!')
end

elseif( narg == 7
g = qcompgn(a,bc,d,h);

else
error(' incorrect number of input arguments! '

end
end

[n,m] = size~h)
k =eye(m);

gr =eye(m);

[ahc,bhc,chc,dhc] = clyfinatr(a~h~c~d.k~qr);

[afc,bfc,cfc,cfuc,dfc] = clmbcmat(a,b,c,d,g,h);

yfc = step(afc,bfc,cfc,dfc,iut);
* yfuc =step(afc,bfc,cfuc,dfc,iu,t);

yhc = step(ahc,bhc,chc,dhc,iu,t);



131

NETRET

Command Line

[a,b,c,d] = netret(v)

Description

this function provides an example set of a,b,c, and d
matrices which can be used to learn and test other
functions provided in this package

this example is an RC network with 7 resistors
(rl... r7) and 4 capacitors (ci... c4)

calculates a,b,c & d matrices for the resistor
and capacitor values entered as input arguments;
contains 2 inputs, 4 states and 2 outputs.

v = vector containing parameters:
rl=v(l) ,, ,r7=v(7) ,cl=v(8) , , ,c(4)=v(ll)
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function [a,b,c,d] =netret(v)
%NETRET [a,b,c,d] = netret(v)

rl=v(1) ;r2=v(2) ;r3=v(3) ;r4=v(4) ;r5=v(5) ;r6=v(6) ;r7=v(7);
cl=v(8) ;c2=v(9) ;c3=v(10) ;c4=v(11);

do = r5*r6*r7 + r4*r6*r7 + r4*r5*r7 + r4*r5*r6;
dl = r6*cl*dO;
d2 = r7*c2*dO;
d4 = r4*c4*dO;

% a (4x4) matrix

a(l,l) = (r4*r5*r7)/dl - l/cl*(l/rl + 1/r6 + 1/r2);
*a(1,2) = 1/(r2*cl) + (4r*6/l

a(1,3) =0;

a(1,4) =(r5*r6*r7)/dl;

a(2,1) 1 /(r2*c2) + (r4*r5*r7)/d2;
a(2,2) =(r4*r5*r6)/d2 - I/c2*(1/r2 + 1/r7 + 1/r3);

* a(2,3) = /(r3*c2);
a(2,4) =(r5*r6*r7)/d2;

a(3,1) =0;

a(3,2) = /(r3*c3);
a(3,3) = -1/(r3*c3);
a(3,4) = 0;

a(4,1) = (r4*r5*r7)/d4;
a(4,2) = (r4*r5*r6)/d4;
a(4,3) = 0;
a(4,4) = (r5*r6*r7)/d4 -1/(r4*c4);

% b (4x2) matrix

b(1,1) =1/(rl*cl);

b(1,2) =(r4*r6*r7)/dl;

* b(2,1) =0;

b(2,2) =(r4*r6*r7)/d2;

b(3,1) =0;

b(3,2) =0;

* b(4,1) =0;

b(4,2) =(r4*r6*r7)/d4;

% c (2x4) matrix

c(l,l) =0;

* c(1,2) =0;

c(1,3) =1;

c(1,4) =0;
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C(2,1) =0;

c (2, 2) =0;

c (2, 3) =0;

C(2,4) =1;

%d (2x2) matrix

d(l,1) =0;

d(1,2) =0;

d(2,1) =0;

d(2,2) =0;
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NOTSEMID

Command Line

[newq] = notsemid(q)

Description

sometimes q will have eigenvalues that are quite small
which the computer may interpret to be negative
(ie. -O.Oe-15)

if an algorithm requires a positive semi-definite
matrix (like the lqe routine) then this condition will
produce

* an error message and an abort this algorithm adds small
increments to the diagonal of q until these small,
'negative' eigenvalues are interpreted by the computer
as being positive

the increments are not allowed to exceed l.e-4 so as
not to have any real effect on the eigenvalues
themselves

q = original matrix
newq = revised matrix
epps = increment added to q's diagonal

0°

0o

S
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function [newq] = notsemid(q)
%NOTSEMID [newq] = notsemid(q)

flag = 1;

if( any(eig(q) < 0)
flag = 0;

eplimit = l.e-4;

disp(' push any key to continue '),pause,
disp(' the eigenvalues of q are '
eig(q),
disp(' push any key to continue '),pause,

epps = 1.e-20;

while( any( eig( epps*eye(q) + q) < 0
epps = epps*l0;

4 if ( epps > eplimit
error(' epps increment exceeded limit '

end
end

disp(' the increment, epps, necessary was '
epps,

end

if flag == 0
newq =epps*eye(q) + q
newqI

end

if flag =

disp(' no eigenvalues were less than zero '
disp(' the matrix is positive semi-definite '
newq q;

end

7^



I

136

QCOMPGN

Command Line

(g,ak,bk,ck,dk] = qcompgn(a,b,c,d,h)

Description

computes the model-based compensator (MBC) gain, G,
using the lqr algorithm and the expression: q = c'*c

this "quick" design function differs from the COMPGN
function in that no singular values are computed or
plotted (hence less calculation time)

g = MBC gain

* h = target loop, kalman filter gain

ak,bk,ck,dk = MBC matrices

a,b,c,d = plant matrices
p = scalar row (entered at run time)

0

0



137

function [g,ak,bk,ck,dk] =qcompgn(alb,c,d,h)

%QCOMPGN [g,ak,bk,ck,dk] qcompgn(a,b,c,d,h)

q c c

if (any(eig(q) < 0)
disp(' q < MBC > is rnot a positive semi-definite matrix

disp(I a revised q must be calculated to make it so'),
newq = notsemid(q);
q = newq;

end

r =eye(min(size(c)));

p =input(' Enter a value for row, p
if Cp < 0

error(' Row, p, must be a positive scalar '
end

g =lqr(a,b,q,p*r);

ak =a-b*g-h*c;

bk h;
ck g;
dk =zeros(min(size(c)));
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QMBCDES

Command Line

[g,h,af,bf,cf,df,ak,bk,ck,dk] = qmbcdes(a,b,c,d)

Description

design an mbc compensator for a plant with matrices
A,B,C & D (plant not augmented with integrators at the
input channels)

this "quick" design function differs from the MBCDES
function in that no singular values are computed or
plotted (hence less calculation time)

the plant has transfer function Gp(s)=C*inv(sI-A)*B

a target (or desired) loop with transfer function
Gkf(s)=C*inv(sI-A)*H will be designed first- this is
the desired < MBC + Plant >

you will be asked if singular values should be matched
at low or high frequencies in the target loop- this
will affect the calculation of H

the MBC gain G is found next- this is used to "recover"

the target loop when the MBC is added to the plant; the

MBC has the transfer function:

K(s)=G*inv(sI-A+B*G+H*C)*H

you will be asked for values of the scalars:
* mu, u; used in target loop design (H matrix)
* row, p; used in target loop recovery (G matrix)

g = MBC gain matrix

h = target loop, kalman filter gain matrix

a,b,c,d = plant matrices

ak,bk,ck,dk = MBC matrices
af,bf,cf,df = < MBC + plant > matrices
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function [g,h,af,bf,cf,df,ak,bk,ck,dk] = qmbcdes(a,b,c,d)
%QMBCDES (g,h,af,bf,cf,df,ak,bk,ck,dk] = qmbcdes(a,b,c,d)

h = qtarg(a,b,c,d);

p = input(' Enter a value for row, p =
if ( p < 0 )

error(' row, p, must bc a positive scalar!! 'j
end

q =c*c;

if (any(eig(q) < 0)
disp(' q < MBC > is not a positive semi-definite matrix

disp(' a revised q must be calculated to make it so'),
newq = notsemid(q);
q = newq;

end

r = p*eye(min(size(c)));
g = lqr(a,b,q,r) ;

[ak,bk,ck,dk,af,bf,cf,df] = mbcmtrix(a,b,c,d,g,h);

a

I.

b
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QMBCDESA

Command Line

[ga,ha,af,bf,cf,df,ak,bk,ck,dkj= qmbcdesa(a,b,c,d)

Description

design an MBC compensator for a plant with matrices
A,B,C & D -- plant is augmented with integrators at
the input channels to produce zero steady state error

this "quick" design function differs from the MBCDESA
function in that no singular values are computed or
plotted (hence less calculation time)

4 the open loop matrices are first augmented with
integrators at the input channels to create matrices
AA,BA,CA & DA with the transfer function
Gp(s)=CA*inv(sI-AA)*BA

a target (or desired) loop with transfer function
Gkf(s)=CA*inv(sI-A)*HA will be designed- this is
the desired < MBC + Plant >

the MBC gain GA is found next- this is used to
"recover" the target loop when the MBC is added to
the plant; the MBC has the transfer function
K(s)=GA*inv(sI-AA+BA*GA+HA*CA)*HA

the singular values of the target loop will auto-
matically be matched at both low and high frequencies
due to the extra degrees of freedom provided by the
integrators

I

you will be asked for values of the scalars:
*mu, u; used in target loop design (H matrix)
*row, p; used in target loop recovery (G matrix)

ga = MBC gain matrix with augmented plant
4 ha = target loop, kalman filter gain matrix

with augmented plant

a,bc,d = original plant matrices
aa,ba,ca,da = augmented plant matrices

ak,bk,ck,dk = MBC matrices
af,bf,cf,df = < MBC + Plant > matrices
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function [ga,ha,af,bf,cf,df,ak,hk,ck,dk]= qmbcdesa(a,b,c,d)
%QMBCDESA [ga,ha,af,bf,cf,df,ak,bk,ck, ik]=qmbcdesa (a,b,c,d)

[aa,ba,ca,da] = augint(a,b,cd);

u= input(' Enter a value for mu, u
if (u < 0)

error(' mu, u, must Le a positi".e scalar!'
end

11 = c*inv(a)*b;
if ( abs(det(l1)) < eps

error(' c*inv(a)*b not invertable!! '
end

lh = c'*lnv(c*cl);
1 = -inv(ll) ;lh];

r =u*eye(min(size(ca)));

q =1*11;

if (any(eig(q) < 0)
disp(' q <for MBC> not a positive semi-definite')
disp(' matrix! A revised q must be found to make it

so.')
newq = notsemid(q);
q = newq;g end

ha =lqe(aa,eye(aa),ca,q,r);

p =input(' Enter a value for row, p
if (p < 0)

ederror(' row, p, must be a pusitive scalar!! '

q =ca'*ca;

if (any(eig(q) < 0)
disp(' q <for target loop> not a positive

semi-definite')
disp(' matrix! A revised q must be f ound to make it

so.')
newq = notsemid(q);
q = newq;

end

r =p*eye(min(size(ca)));

ga =lqr(aa,ba,q,r);

[ak,bk,ck,dk,af,bf,cf,df]= mbcmtrix(aa,ba,ca,daga,ha);



4 142

QNTSEMID

Command Line

[newq] = qntsemid(q)

Descrintion

sometimes q will have eigenvalues that are quite small
which the computer may interpret to be negative
(ie. -O.Oe-15)

if an algorithm requires a positive spmi-definite
matrix (like the lqe routine) then this condition will
produce

an error message and an abort this algorithm adds small
increments t; the diagonal of q until these small,
'negative' eigenvalues are interpreted by the computer
as being positive

the increments are not allowed to exceed l.e-4 so as
not to have any real effect on the eigenvalues
themselves

q = original matrix
newq = revised matrix
epps = increment added to q's diagonal

this function differs from the NOTSEMID function in
that no messages are displayed on the screen at run
time

6

6
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function [newq] = qntsemid(q)
%QNTSEMID [newq] = qntsemid(q)

flag=l1;

if( any(eig(q) < 0)
flag = 0;
eplirit = l.e-4;
epps = 1.e-20;

while( any( eig( epps*eye(q) + q) < 0
epps = epps*l0;
if ( epps > eplimit

error(' epps increment exceeded limit '
end

end
end

if flag == 0
newq = epps*eye(q) + q

end

if flag == 1
disp(' no eigenvalues were less than zero '
disp(I the matrix is positive semi-definite '
newq q-

end*Z
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QTARG

Comniand Line

[h] = qtarg(a,b,c,d)

Description

this function combines the functions TARGLOW and TARGHI
in terms of calculating the h matrix for the target

Iloop
singular values may be matched at either low or high
frequency and the scalar (mu) is inputted when the
function is executed

this function differs from TARGLOW or TARGHI in that no
singular values are calculated and therefore it allows
a much quicker calculation of h

41
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function [h] = qtarg(a,b,c,d)
%QTARG [h] = qtarg(a,b,c,d)

disp(' Do you wish to match the singular values of the '
disp(' target loop at low or high frequencies? '),
flag = input(' Type 0 for low or I. for high: ');

if ( flag == 0 )
1 =-c'*inv(c*inv(a)*c');

- elseif (flag == 1)
1 =l(~c)

else
error(' low <0> or high <1> are the only choices!! '

end

q=1*'
if ( any(eig(q) < 0)

disp(' q is not a positive semi-definite matrix *
disp(' a revised q must be calculated to make it so'),
newq = notsemid(q);

6end q = newq;

disp(' '),
u =input(' Enter a value for mu, u
if (u < 0

ederror(' mu, u, must be a positive scalar!! 
'

r = u*eye(min(size(c)));

h = lqe (a, eye (a) ,c, q,r);



4
146

QTARGA

Command Line

[ha] = qtarga(a,b,c,d)

Description

this function is similar to the function TARGHLA in
terms of calculating the h matrix for the target loop

singular values may be matched at either low or high
frequency and the scalar (mu) is inputted when the
function is executed

this function differs from TARGHLA in that no singular
* values are calculated and therefore it allows a much

quicker calculation of h

S

6e
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function [ha] = qtarga(a,b,c,d)
%QTARGA [ha] = qtarga(a,b,c,d)

u= input(' Enter a value for mu, u=
if (u < 0)I

error(' mu, u, must be a positive scalar '
end

[aa,ba,ca,da] = augint(a,b,c,d);

11 = c*inv(a)*b;
lh = c'*inv(c*c');
1 =[-inv(11);lh];

q=1*'
if (any(eig(q) < 0)

disp(' q is not a positive semi-definite matrix '
disp(' a revised q must be calculated to make it so'),
newq = notsemid(q);
q = newq;

end

r =u*eye(min(size(ca)));

ha =lqe(aa,eye(aa),caq,r);
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REDUCEA

Command Line

[ear] = reducea(ea,a,tol)

Description

this function is used to reduce a matrix ea that is
added to a matrix a such that the reduced ea, ear, when
added to a, (a+ear), will to some tolerance tol have
the same maximum real eigenvalue as (a+ea)

the routine used is:

1. find the element of ea with minimum absolute
value

2. eliminate that element; result is ear
3. compare maximum real eigenvalues of (a+ea)

and (a+ear)"
4. if difference is greater than tol, the

process is complete; ear = ea
5. if difference is less than tol, ea = ear, go

to step (1)

this function is called from the function EWTODVP which
is used to find which parameters in a system have
significant impact on stability

4

4

I

I
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function [ear] = reducea (ea,a,tol)
%REDUCEA [ear] = reducea(ea,a,tol)

LI eigea = max(real(eig(a+ea)));
ear = ea;
narg = nargin;

if(narg == 2
if ( abs(eigea) > .0001)

tol = abs(.001 - eigea);
else

tol = .0005;
end

end
[n,m] = size(ear);
limit = n*m;
counti 1;
while 1

if (countl > limit)
break

end
templ = ear(:);
ltl = length(templ);
count2 =0;

temp2 []
for i=l:ltl

if ( templ(i) -=0.0
count2 = count2 + 1;
temp2(count2) = templ(i);

end
end
[minelem,index] = min(abs(temp2));
for i=l:n

for j=l:m
if (ear(i,j) == temp2(index)

row = i
col = j

end
end

end
ear(row,col) =0.0;

eigear = max(real(eig(a+ear)));
test = abs(eigear -eigea);

if (test > tol)
ear(row,col) =minelem;

edbreak

countl = countl+1;
end
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RETSS

Command Line
[a,b,c,d] = retss(v,slsys)

Description

this function allows a particular state space
representation of a system comprised of a,b,c and d
matrices to be chosen from all the systems the user may
have created

three example state space representations of RC
networks that have been provided are currently
referenced from this function

to add networks that the user creates, elseif
statements identical to those currently seen in the
function must be added

for example, if another network (now the 4th) was to be
added then the statements:

elseif ( slsys == 4

[a,b,c,d] = filename(v);

would have to be added to the function file

a,b,c,d = matrices for state space representation
of the desired system

v = vector of nominal parameter values (ie. rl,r2,...)

* slsys = 1 ==> select netret.m
= 2 ==> select aprob.m
= 3 ==> select bprob.m

0

0
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function fa,b,c,d] = retss(v,slsys)
%RETSS [a,b,c,d] = retss(v,slsys)

lv =length(v);

if (sisys == 1
[a,b,c,d] =netret(v);

elseif ( sisys 2= 2
[a,b,c,d] aprob(v);

elseif ( slsys ==3

[a,b,c,d] =bprob(v);

elseif ( sisys ==4

[a,b,c,d] =cprob(v);

else
error('IMPROPER CHOICE OF SYSTEM!')
disp('If you wish to add another choice the file')
disp('retss.m much be edited to include it.')

end
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SVCLINV

Commnand Line

[svcli] =svclinv(a,b,c,d,w)

Description

calculates and plots singular values for the
inverse of the closed loop transfer function
matrix given the entered matrices and frequency
range, w

G(s) =C*INV(sI-A)*B+D, INV(C) =(I+INV(G))
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function [svcli] = svciinv(a,b,c,d,w)
%SVCLINV [svcli) = svclinv(a,b,c,d,w)

ii = eye(min(size(c)));
iii = eye(a);

j = sqrt(-l);

nw = length(w);

for i=1:nw

g = c*inv(j*w(i)*iii-a)*b+d;
cli = ii + inv(g);
svwcli(:,i) =svd(cli);

svcli(:,i) =20*loglO(Svwcli(:,i));

end
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SVEATOMU

Command Line

[pl,mu] = sveatomu(svea,a,b,c,w,lomu,himu,npmu)

Description

this function is used to determine what values of the
scalar (mu) will cause the plots max(svea) and amin( sI
- a + hc ) to cross in the target loop; if they cross
they violate an inequality which requires them not to
cross to insure stability robustness for the closed
loop system

amin( sI - a + hc ) are the minimum singular values of
sI minus the closed loop a matrix of the target loop
and are found within this function using SVPHI with
a,h, and c as input arguments

svea are the inputted singular values of the error
between the actual and nominal plant closed loop a
matrices, determined at low frequency; therefore
max(svea) are the maximum singular values of this error

a run-time choice is given as to whether the scalar
variations are to occur when singular values are shaped
at low or high frequencies

after executing the function, the command:
plot(mu,pl, 1*)

will produce a plot showing for which values of the
scalar the plots crossed and for which they did not

the design parameter in the target loop, the h matrix,
can then be found; using a scalar value that did not
cause the plots to cross, the function QTARG is entered
and an h calculated which preserves good
stability/robustness in the target loop

4 lowmu = smallest scalar to be tested
himu = largest scalar to be tested
npmu = number of points to be tested
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function [pl,mu] =sveatomu(svea,a,b,c,w,lomu,himu,npmu)

%SVEATOMU [pl,mu] =sveatomu(svea,a,b,c,w,lomu,himu,npmu)

* disp(' Do you wish to match the singular values of the '
disp(' target loop at low or high frequencies? )
flag = input(' Type 0 for low or 1 for high: )

nw =length(w);

for i=l:npmu+l
U mu(i) = lomu, + (i-l)*(himu-lomu)/npmu;

if ( flag == 0)
1 =-c'*inv(c*inv(a)*c');

elseif Cflag == 1)
1 C-= ~ c)

else
error(Olow <0> or high <1> are the only choices!')

end

q=1*;
if ( any(eig(q) < 0)

newq = qntsemid(q);
q = newq;

end
r = mu(i)*eye(min(size(c)));
h = lqe(a,eye(a),c,q,r);

svphicl = svphi(a,h,c,lP,w);

fl =0;

for k = 1:nw
minsvphicl = min(svphicl(:,k));
maxsvea = max(svea(:,k));
if (maxsvea >= minsvphicl

fl = 1;
break

end
end

if fl 1l
p1(i)=1.

else
p1(i) =0.;

end
end

plot(mu,pl, 1*1)

xlabel(Imu value');ylabel(10 or 1')
title('<l>: PLOTS CROSSED OR <0>: DID NOT CROSS VS MU')
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SVPHI

command Line

[svphiocl] =svphi(a,b,c, selocl,w)

Description

calculates the singular values of:

IsI -a+ b*c if slocl=l1
si -a if slocl=O0

over the frequency range w
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function [svphiocl] = svphi(a,b,c,selocl,w)
%SVPHI [svphiocl] = svphi(a,b,c,selocl,w)

*iii = ya;
j =sqrt(-1);

nw =length(w);

for i = 1:nw

- if ( seloci == 0
phioci j*w(i)*iii - a;

elseif ( seloci == 1)
phioci = j*w(i)*iii - a + b*c;

else
error('choices are <1> closed or <0> open loop')

end

svwphiocl(:,i) =svd(phiocl);

svphiocl(:,i) =20*loglO(svwphiocl(:,i));

end
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S VP LOTS

Command Line

[svol, svse, svcl] = svplots (a,b, c,d,w,pl)
or [svol,svse,svcl) = svplots(a,b,c,d,w)

Description

calculates and plots the singular values for -
4 the open-loop TFM, sensitivity TFM, and

closed-loop TFM for the entered matrices and
frequency range, w

p1 = 1 ==> plots sent to screen (default if p1 not
included in command line)

p1 =0 ==> plots not sent to screen -
OL TFM: G(S)=C*INV(SI-A)*B+D
SENS TFM: S(s)=INV-(I+G(s))
CL TFM: C(s)=INV(I+G(s))*G(s)



* 159

function [svol,svse,svcl] svplots(a,b,c,d,w,pl)
%SVPLOTS [svol,svse,svcl] =svplots(a,b,c,d,w,pl)

% or (svol,svse,svcl] =svplots(ab,cd,w)

narg = nargin;
if (narg ==5

P1 =1

end

siz =min(size(c));

ii =eye(siz);

iii =eye(a);

j =sqrt(-1);

nw =length(w);

for i = 1:nw;
tfm=c/(j*w(i) *iii-a) *b+d;
svwol (: ,i) = svd (t fm) ;
svwse(:,i) = svd(ii/(ii+tfm));
svwcl(:,i) = svd(ii/(ii+tfm)*tfm);
svol(:,i) = 20*loglQ(svwol(:,i));
svse(:,i) = 20*loglO(svwse(:,i));
svcl(:,i) = 20*loglO(svwcl(:,i));

end;

if ( p1 == 1

semilog x(w,svol) ;title( ISV OPEN-LOOP PLOT');
xlabel( 'frequency') ;yiabel( 'db') ;grid;

semilogx(w,svse) ;title( 'SV SENSITIVITY PLOT');

xlabel( 'frequency') ;ylabel( 'db') ;grid;

semilogx(w,svcl) ;title( 'SV CLOSED-LOOP PLOT');

xlabel( 'frequency') ;ylabel( 'db') ;grid;

end
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SVRETDIF

Command Line

[svrd] = svretdif(a,b,c,d,w,pl)
or [svrd] = svretdif(a,b,c,d,w)

Description

calculates and plots singular values for the
return difference matrix given the entered matrices
and frequency range, w

pl = 1 ==> plots sent to screen (default if pl not
included in command line)

pl = 0 ==> plots not sent to screen

G(s) = C*INV(sI-A)*B+D
return difference matrix = ( I + G(s)

I

iA
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function [svrd] =svretdif(a,b,c,d,w,pl)

%SVEETDIF [svrd] =svretdif(a,b,c,d,w,pl)

% or [svrd] svretdif(a,b,c,d,w)

narg = nargin;
if (narg == 5

p1 = 1;
end

ii =eye(min(size(c)));

iii =eye(a);

j =sqrt(-1);

nw =length(w);

for i=l:nu-
g =c*inv(j*w(i)*iii-a)*b+d;

rd =ii + g;
svwrd(:,i) =svd(rd);

svrd(:,i) =20*loglO(svwrd(:,i));

end
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TARGHI

Command Line

[h,svolhsvsehsvclh] = targhi(abcdwpl)

or [h,svolh,svseh,svclh] = targhi(a,b,c,d,w)

Description

match singular values at high frequencies
* for target loop using the lqe algorithm and the

expression: 1 = c'/(c*c')

h = target loop, kalman filter gain

svolh = singular values for Gkf(s)=C*inv(sI-A)*H
* svseh = singular values for S(s)=inv(I+Gkf)

svclh = singular values for C(s)=inv(I+Gkf)*Gkf
(matched at high frequencies)

w = frequency range, u = scalar mu (entered at run
time)

pl = 1 ==> plots sent to screen (default if
pl not included in command line)

pl = 0 ==> plots not sent to screen

S
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function [h,svolh,svseh,svclh] =targhi(a,b,c,d,w,pl)

%TARGHI [h, svolh, svseh, svclh] targhi (a,b,c,d,w,pl)

I narg = nargin;
if (narg == 5

p1 = 1;
end

u =input(' Enter a value for mu, u
if (u < 0)

error(' mu, u, must be a positive scalar '
end

1 = c/Cc)

q = 1*11;

if (any(eig(q) < 0)
disp(' q is not a positive semi-definite matrix '
disp(' a revised q must be calculated to make it so'),
newq = notsemid(q);

b q =newq;
end

r = u*eye(min(size(c)));

* disp(' BE PATIENT- IT WILL TAKE A FEW SECONDS TO COMPUTE '

disp(' H AND THE TARGET LOOP SINGULAR VALUE PLOTS '

h = lqe(a,eye(a),c,q,r);
* (svolh,svseh,svclhl = svplots(a,h,c,d,w,pl);
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TARGHAA

Command Line

[ha,svolh, svseh,svclh] = targhla(a,b,c,d,w,pl)
or Cha,svolh,svseh,svclh] = targhla(a,b,c,d,w)

Description

match singular values at both low and high frequencies
for the target loop by creating the augmented matrices
(integrators added at each input channel) and using
the lqe algorithm and the expressions:

11 = -inv(c*inv(a)*b)
lh = c'*inv(c*c')

* 1 = (ll;lh]

ha = target loop, kalman filter gain
for augmented plant

svolh = singular values for Gkf(s)=C*inv(sI-A)*H
svseh = singular values for S(s)'=inv(I+Gkf)
svclh = singular values for C(s)=inv(I+Gkf)*Gkf

(matched at low and high frequencies)

aa,ba,ca,da = augmented matrices (integrators
added at each input channel)

ab,c,d = original plant matrices
w =frequency range, u = scalar mu (entered at run

time)

p1 1 ==> plots sent to screen (default if
* p1 not included in command line)

p1 0 ==> plots not sent to screen

6

n

6
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function [ha,svolh,svseh,svclh] =targhla(a,b,c,d,w p1)
%TARGHLA [ha, svolh, svseh,svclh] =targhla(a,b,c,d,w,pl)

% ~or [ha,svolh,svseh,svclh] = t-arghla(a,b,c,d,w)

narg = nargin;
if (narg ==5)

p1 1
end

u =input(' Enter a value for mu, u=
if (u < 0)

error(' mu, u, must be a positive scalar '
end

[aa,ba,ca,da] = augint(a,b,c,d);

11 = c*inv(a)*b;
lh = cl*inv(c*c');
1 = [-inv(ll);lh];

b r = u*eye(min(size(ca)));
q 11'

if (any(eig(q) < 0)
disp(' q is not a positive semi-definite matrix '
disp(' a revised q must be calculated to make it so'),3 newq = notsemid(q);
q = newq;

end

disp(' BE PATIENT- IT WILL TAKE A FEW SECONDS TO COMPUTE '

disp(' H AND THE TARGET LOOP SINGULAR VALUE PLOTS '

ha = lqe(aa,eye(aa),ca,q,r);
[svolh,svseh,svclh] = svplots(aa,ha,ca,da,w,pl);
^z
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TARGLOW

Command Line

[h, svolh, svseh,svclh] = targlow(a,b,c,d,w,pl)
or Lh,svolh,svseh,svclh] = targlow(a,b,c,d,w)

Description

match singular values at low frequencies
for target loop using the lqe algorithm and the
expression: 1 = -c'*inv(c*inv(a)*c')

h = target loop, kalman filter gain

svolh = singular values for Gkf(s)=C*inv(sI-A)*H

svseh = singular values for S(s)=inv(I+Gkf)H' svclh = singular values for C(s)=inv(I+Gkf)*Gkf
(matched at low frequencies)

w =frequency range, u = scalar mu (entered at run
time)

p1 I = plots sent to screen (default if
p1 not included in command line)

p1 0 =>plots not sent to screen
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function [h,svolh, svseh,svclh] =targlow(a,b,c,d,w,pl)

%TARGLOW [h, svolh, svseh,svclh] =targlow(a,b,c,d,w,pl)

% or [h,svolh,svseh,svclh] =targlow(a,b,c,d,w)

narg = nargin;
if (narg == 5

p1 -1;
end

- u =input(' Enter a value for mu, u
if (u < 0

error(' mu, u, must be a positive scalar '
end

1 =-c'*inv(c*inv(a)*c');

q =1*11;

if Cany(eig(q) < 0)
disp(' q is not a positive semi-definite matrix '
disp(' a revised q must be calculated to make it so'),
newq = notsemid(q);
q = newq;

end

r = u*eye(min(size(c)));

disp(' BE PATIENT- IT WILL TAKE A FEW SECONDS TO COMPUTE '

disp(' H AND THE TARGET LOOP SINGULAR VALUE PLOTS '

h = lqe(a,eye(a),c,q,r);
[svolh,svseh,svclh] =svplots(a,h,c,d,w,pl);

^z


